20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Немного из истории лазерного излучения

История лазера

Сегодня различные типы лазеров используются во многих отраслях науки, техники, на производстве и в медицине. Даже в повседневной жизни мы все чаще встречаем эти электронные приборы. Однако всего лишь каких-то 50-60 лет назад о лазере мало кто знал, да и самого прибора, по сути, еще не существовало – были лишь обособленные разработки в этой области и неиссякаемый энтузиазм некоторых ученых. Именно эти ученые из России, США и других стран собственно и стояли у истоков история лазера, о которой пойдет речь в этой статье.

Но до появления первого функционирующего лазера была еще достаточно длинная история различных открытий и изобретений, которые в последствие и легли в основу изобретения этого прибора. И так, обо всем по порядку.

В 1900 году один из талантливейших умов нашей планеты – немецкий ученый Макс Планк открывает элементарную порцию энергии – квант и теоретически описывает связь энергии кванта с частотой электромагнитного излучения, вызвавшей его появление. Спустя 8 лет в 1918 году за свое открытие он получает Нобелевскую премию. Кстати примерно в это же время другой выдающийся ученый Альберт Эйнштейн открывает наименьшую элементарную частицу света – фотон и доказывает теорию дискретности света.

В 1917 году Эйнштейн формулирует теорию «Вынужденного излучения», которая описывает возможность создания условий, при которых электроны одновременно излучают свет одной длины волны. То есть, по сути, он описал теоретическую возможность создания некоего управляемого электромагнитного излучателя, названного впоследствии лазером.

Только через 34 года идея Эйнштейна из теории начала превращаться в реальность. В 1951 году профессор Колумбийского университета Чарльз Таунс решается использовать теорию «вынужденного излучения» для создания реального действующего прибора. В 1954 году он со своими единомышленниками Гербертом Цайгером и Джеймсом гордоном на практике реализует свой замысел, представив на суд общественности – первый в мире реально работающий лазер. Правда, тогда он назывался «мазер». Прибор генерировал очень тонкий луч света на частоте 100 Гц мощностью 10 нВт. Конечно же, по сегодняшним меркам это немного, но тогда это был настоящий прорыв в оптоэлектронике.

Спустя год в 1955 году советские ученые Александр Прохоров и Николай Басов из Института физики Академии наук CCCP совершенствуют конструкцию мазера, изменяя метод накачки электронов. В 1964 году они вместе с Таунсом получают за свои открытия Нобелевскую премию. В 1956 году американский ученый Николас Блумберген из Гарвардского университета разрабатывает твердотельный мазер. До этого существовали только газовые.

Что касается самого названия, то впервые термин «лазер» упоминает в своих научных работах выпускник Колумбийского университета и коллега по научным изысканиям Чарльза Таунса – Гордон Гуд. Это произошло в 1957 году. Почему такое изменение? Дело в том, что первые мазеры работали не в оптическом диапазоне и были невидимы для человеческого глаза. Таунс же разработал конструкцию оптического светогенерирующего прибора, а Гуд ввел понятие «лазер» и нотариально заверил право первого, кто описал принцип работы этого прибора.

В 1960 году американский физик Теодор Мейнман создает первый в мире лазер, который работает на кристалле драгоценного камня – рубине. Позже этот тип лазеров стали называть «рубиновыми» и они достаточно долгое время были самыми широко распространенными. Чуть позже в этом же году в ноябре месяце компания IBM представила свой твердотельный лазер, использующий технологию 4-уровневой накачки.

Первое коммерческое использование лазера произошло в 1961 году. Тогда на рынке работало уже несколько компаний, разрабатывающих и производящих подобные оптические приборы. В 1962 году был впервые использован рубиновый лазер. С его помощью сваривались швы на корпусе наручных часов.

Первый полупроводниковый лазер был создан в 1962 году в компании General Electric. Его разработчиком стал инженер Ник Холоньяк. Сейчас лазеры этого типа широко используются в бытовой электронике: CD-проигрывателях и DVD-плеерах.

История создания лазера

Создание лазеров — совершило революцию в науке и технике. За два десятилетия после их возникновения формировались новые фундаментальные и прикладные направления физической оптики — оптическая квантовая электроника и нелинейная оптика. В настоящее время невозможно представить ни современные фундаментальные исследования, ни решение технических и технологических задач без использования лазеров.

Лазеры — это генераторы и усилители когерентного излучения в оптическом диапазоне, действие которых основано на индуцированном (вызванном полем световой волны) излучении квантовых систем — атомов, ионов, молекул, находящихся в состояниях, существенно отличных от термодинамического равновесия. Лазеры, как и мазеры, генераторы и усилители СВЧ диапазона, называют ещё квантовыми генераторами (усилителями), поскольку поведение участвующих в их работе частиц описывается законами квантовой механики. Принципиальным отличием лазеров от всех других источников света (тепловых, газоразрядных и др.), представляющих собой по сути дела источники оптического шума, является высокая степень когерентности лазерного излучения. С созданием лазеров в оптическом диапазоне появились источники излучения, аналогичные привычным в радиодиапазоне генераторам когерентных сигналов, способные успешно использоваться для целей связи и передачи информации, а по многим своим свойствам — направленности излучения, полосе передаваемых частот, низкому уровню шумов, концентрации энергии во времени и т.д. — превосходящие классические устройства радиодиапазона.

Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена так фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн впервые ввел представление о вынужденном испускании.

Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В. А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В. А. Фабрикантом, предполагала использование микросистем с инверсной заселённостью уровней. Позднее, после окончания Великой Отечественной войны В. А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. заявку на изобретения способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой «Предмет изобретения» было написано: «Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающейся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путём создают избыточною по сравнению с равновесной концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбуждённым состояниями».

Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот. В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н. Г. Басов и А. М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его «молекулярным генератором». Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом.

В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара — в Физическом институте имени П. Н. Лебедева Академии наук СССР и в Колумбийском Университете в США.

Впоследствии от термина «мазер» и произошёл термин «лазер» в результате замены буквы «М» (начальная буква слова Microwave — микроволновой) буквой «L» (начальная буква слова Light — свет). В основе работы, как мазера, так и лазера лежит один и тот же принцип — принцип, сформулированный . В. А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его называли квантовой радиофизикой, а позднее стали называть квантовой электроникой.

В 1955 г. Н. Г. Басов и А. М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселённости уровней. В 1957 г. Н. Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же году В. А. Фабрикант и Ф. А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количествах водорода и гелия. В 1958 г. А. М. Прохоров и независимо от него американский физик Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; он выдвинули идею применения в оптическом диапазоне не объёмных, а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объёмного тем, что убраны боковые проводящие стенки и линейные размеры резонатора выбраны большими по сравнению с длинной волны излучения.

Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели учёных в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого «оптического мазера» — лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого, имели серебряное покрытие (эти грани играли роль зеркала резонатора), периодически облучались зелёным светом от лампы-вспышки высокой мощности, которая змеёй охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребрённых граней кубика.

В том же 1960 г. американскими физиками А. Джавану, В. Беннету, Э. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В. А. Фабриканта и Ф. А. Бутаевой, выполненными в 1957 г.

Начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры.

Лечение суставов лазером: польза и вред

Лазеротерапия является таким методом, который основан на применении обладающего определёнными характеристиками светового луча в медицинских целях. В переводе с английского языка слово «лазер» трактуется как увеличение света посредством вынужденного излучения. Первый квантовый генератор разработали в шестидесятые годы прошлого века. Аппарат для проведения лазерной терапии в России был допущен к применению в медицинской практике в 1974 г. Лечение суставов лазером в последнее время набирает популярность.

Читать еще:  Потенция после 50 лет

Немного из истории лазерного излучения

Уже в конце девятнадцатого века практиковалось лечение посредством искусственных источников световых волн. Подобный метод терапии был разработан и введён физиотерапевтом Н. Р. Финзеном из Дании, за что он был удостоен в 1903 году Нобелевской премии. За весь период изучения данной методики и её развития было последовательно пройдено несколько этапов:

лечение с помощью света;

Польза и вред лечения суставов лазером будут рассмотрены в данной статье.

Признание эффективности

Эффективность методики была признана на территории бывшего СССР в 1974 году. В 1986 году в Москве открылся Институт лазерной медицины, называющийся в настоящее время Научным центром лазерной медицины ФМБА РФ. Здесь тщательно изучаются особенности действия, а также разрабатываются современные терапевтические методики. В данный момент Россия является мировым лидером в обоснованном с научной точки зрения, практическом использовании лазеротерапии, максимально исследованы показания и противопоказания к ней. В США и Европе данная методика получила официальное признание в 2003 году, и это послужило толчком к буму в использовании лазера для диагностики болезней и терапии, а также исследований его воздействия.

Применение

При использовании лечения суставов лазером требуется последовательное и тщательное соблюдение типа методики, параметров, частоты импульсов, длины волн, режима и мощности функционирования НИЛИ, периодичности, локализации и времени воздействия. Только при учёте всех этих признаков лечение будет действительно безопасным и эффективным. Именно поэтому становится понятно, что профессионализм и уровень квалификации специалиста, который работает на лазерной установке, имеет ключевое значение. Несмотря на то, что методология и технология такого рода терапии проста, необходимо очень чёткое понимание особенностей применений метода лечения лазером артроза коленного сустава.

Положительные свойства лазеротерапии

Одним из значимых преимуществ данного метода выступает небольшое число абсолютных противопоказаний. Если в большинстве других случаев беременность, онкология и пожилой возраст пациентов выступают в качестве строго запрещённых, то при лазеротерапии они ограничиваются относительно и учитываются при выборе её разновидности. Метод лечения суставов лазером включён в терапевтические стандарты большего количества медицинских направлений.

Механизмы действия лазера

Вследствие воздействия НИЛИ и в результате поглощения энергии света формируется перечень фотобиологических процессов. Увеличение содержания свободного кальция в составе клеток на небольшой срок запускает дальнейшую череду ответных реакций организма на его влияние:

происходит активация метаболических и пролиферативных процессов;

приходит в норму действие иммунной системы;

совершенствуется состояние сосудов, в числе которого отмечается и расширение их стенок;

появляется эффект обезболивания;

происходит корректировка гуморального и клеточного иммунитета;

увеличивается резистентность организма неизбирательного типа;

улучшаются такие свойства крови, как реологические;

происходит усиление микроциркуляции;

приходит в норму кислородная и транспортная кровяные функции;

совершенствуются обменные процессы;

повышается протеолитическая и антиоксидантная кровяная активность;

активируется тканевая регенерация;

происходит стимулирование гемопоэза;

прослеживается противовоспалительное, дезинтоксикационное и антиаллергическое влияние, и большое количество иных положительных признаков.

Противопоказания к лазеротерапии

Ни в коем случае нельзя проводить лечение суставов лазером в следующих случаях:

  • непереносимость индивидуального характера;
  • первый триместр беременности;
  • туберкулёз открытой формы;
  • патологии щитовидной железы;
  • дефекты кроветворения;
  • анемия;
  • склонность к кровотечениям и низкая свёртываемость крови.

В качестве относительных противопоказаний лечения лазером коленного сустава выступают:

  • серьёзные заболевания сердца и сосудов;
  • дефекты мозгового кровообращения;
  • почечная и печёночная недостаточность, находящиеся в стадии декомпенсации;
  • опухоли злокачественного и доброкачественного характера;
  • туберкулёз в хронической форме (когда выделение бактерий отсутствует).

Процесс проведения лазеротерапии

Пациент не испытывает во время лечения суставов лазером по отзывам каких-либо значительных ощущений. Специальная подготовка не требуется. Терапия проводится преимущественно без госпитализации, сразу после процедуры разрешено отправиться домой. Посредством специального датчика производится воздействие на проекцию органа либо кожу: на расстоянии, с касанием тела с компрессией и без неё. При акупунктурном методе необходим подбор трёх-пяти точек, соответствующих патологии, и на каждую из них воздействуют в течение одной-трёх минут. Продолжительность процедуры и количество процедур определяется в индивидуальном порядке.

Противопоказания лечения суставов лазером должны строго соблюдаться.

Как проводится терапия?

Любое заболевание суставов отличается собственными механизмами возникновения и влияние в целом на состояние организма. Именно поэтому в их лечении врачи используют различные лазерные препараты и методики воздействия.

  1. Если у пациента диагностирован гонартроз, коксартроз или артроз голеностопного сустава, то используется способ сканирующего лазерного луча. В этом случае излучение постепенно проходит по заданным для него координатам. Для максимального глубокого влияния на очаг болезни применяется речное сканирование. Чтобы воздействовать поверхностно, требуется автоматическое сканирование с помощью специально предназначенных электронных приборов. Действие лазерного излучения на болевые зоны продолжается от шести до восьми минут. После того как будет пройдено восемь сеансов, появляются первые признаки оздоровления: устраняется скованность движений и возвращается прежняя их амплитуда, проходят боли.
  2. Смешанная терапия (магнитно-лазерная) помогает в преодолении тяжёлых стадий коксартроза и артроза. Вследствие взаимовлияния лазерного луча и постоянного магнитного поля оказывается ощутимое воздействие на организм. Данное излучение проникает в ткань на восемьдесят-сто миллиметров.
  3. Гелиево-неоновый лазер используется для ликвидации периартрита. Это изобретение является уникальным и производит волны, достигающие длины 0,6328 нм. Благодаря инфракрасному лучу обеспечивается электромагнитное, фотохимическое и тепловое влияние. После того как будут пройдены десять сеансов, длящиеся от трёх до пяти минут, разрушение соединительной ткани останавливается, возобновляется попадание в организм требуемых микроэлементов, происходит стимуляция противовоспалительных процессов и в сосудах формируется новая система капилляров.

Польза лечения

Лазерный луч при лечении лазером тазобедренного сустава стимулирует много положительных физических и химических изменений. В воспалённых тканях благодаря воздействию данной процедуры осуществляются серьёзные биохимические процессы, имеющие направленность на выздоровление:

  • активизация функционирования клеток;
  • улучшение тканевой нервной проводимости;
  • ускорение обмена веществ;
  • ликвидация болевого синдрома;
  • происходит выработка антител, помогающих в борьбе с воспалениями внутри организма и аллергическими реакциями.

Одним из важных преимуществ лечения коленного сустава лазером по отзывам является сокращение употребления лекарственных препаратов в больших количествах при наличии заболеваний суставов.

Принципы воздействия лазером

Эффективность терапии посредством лазера зависит от различных аспектов. Если знать эти особенности, можно избежать непрофессионального лечения.

Чтобы получить действительно объективный и всесторонний результат, квалифицированные специалисты всегда пользуются несколькими лазерными приборами, имеющими различную длину электромагнитных колебаний, с постоянным и импульсным режимом.

Для терапии суставных тканей применяется исключительно инфракрасное импульсное излучение.

Данный вид терапии нужно проводить исключительно в первой половине дня, поскольку в это время симпатическая нервная система в тонусе.

На протяжении сеанса ни в коем случае нельзя увеличивать общую дозу излучения, поскольку это вызовет развитие в суставе обострённых реакций.

При обострении заболеваний суставов необходимо обратиться к импульсному режиму, однако дозы должны быть небольшими.

Если болезнь характеризуется хроническим протеканием, интенсивность влияния лазером увеличивают в несколько раз.

При облучении акупунктурных точек происходит активизация компенсаторной функции, иммунитет повышается.

Использование луча локально в зоне патологии способствует улучшению кровообращения. При этом обеспечивается противовоспалительный, обезболивающий и противоотёчный эффект.

Если расположить излучатель перпендикулярно по отношению к коже, степень прохождения света лазера через ткани будет увеличена.

Характер воздействия излучения на сустав определяется частотой лазерных импульсов.

Осложнения лазерной терапии

Может произойти увеличение болевого синдрома при лечении лазером плечевого сустава. Оно чаще всего возникает из-за несоблюдения требуемой техники, а также в том случае, если у пациента имеются какие-либо индивидуальные особенности.

Могут отмечаться головокружение и головные боли. В этом случае также влияет чувствительность к аппарату либо его поломка.

Кроме того, возможна гипертермия, обусловленная активных выходом токсинов печени в кровоток и дальнейшим их выведением из организма. Но чаще всего данная реакция проходит, и поэтому лечение отменять не нужно.

История одного из самых важных изобретений XX века — лазера

Но мысль исследовать газовые разряды ради наблюдения вынужденного излучения в те времена никому не пришла в голову — ведь ученые даже не подозревали о его существовании.

А в 1913 году Альберт Эйнштейн высказал гипотезу, что в недрах звезд излучение может генерироваться под действием вынуждающих фотонов. В классической статье «Квантовая теория излучения», опубликованной в 1917 году, Эйнштейн не только вывел существование такого излучения из общих принципов квантовой механики и термодинамики, но и доказал, что оно когерентно вынуждающему излучению (то есть имеет одинаковое направление, длину волны, фазу и поляризацию). А спустя десять лет Поль Дирак строго обосновал и обобщил эти выводы.

Первые эксперименты

Работы теоретиков не остались незамеченными. В 1928 году Рудольф Ладенбург, директор отдела атомной физики Института физической химии и электрохимии Общества кайзера Вильгельма, и его ученик Ганс Копферманн экспериментально наблюдали инверсию населенностей, причем именно в опытах с неоновыми трубками. Но вынужденное излучение было очень слабым, и различить его на фоне спонтанного излучения было сложно. До лазера оставался лишь шаг: чтобы усилить вынужденное излучение, в среду необходимо ввести положительную обратную связь, то есть поместить ее в резонатор. Но для этой идеи время еще не настало.

Мало кто занимался усилением оптических сигналов с помощью вынужденного излучения и в 1930-е годы. Наиболее серьезной работой по этой теме была докторская диссертация москвича Валентина Фабриканта, опубликованная в 1940 году. В 1951 году В.А. Фабрикант, Ф.А. Бутаева и М.М. Вудинский подали заявку на изобретение нового метода усиления электромагнитного излучения, основанного на использовании среды с инверсией населенностей. К сожалению, эта работа была опубликована лишь через 8 лет и мало кем замечена, а попытки построить действующий оптический усилитель оказались бесплодными — опять-таки из-за отсутствия резонатора. В 1957 году Фабрикант и Бутаева даже наблюдали квантовое усиление световых волн в опытах с пропусканием электрических разрядов через ртутные пары, однако это так и осталось их личным достижением.

Путь к созданию лазера был найден не оптиками, а радиофизиками, которые издавна умели строить генераторы и усилители электромагнитных колебаний, использующие резонаторы и обратную связь. Им-то и было суждено сконструировать первые квантовые генераторы когерентного излучения, только не светового, а микроволнового.

Мазеры

Возможность создания такого генератора первым осознал профессор физики Колумбийского университета Чарльз Таунс. Эта мысль осенила его весной 1951 года во время прогулки по Франклин-скверу в центре Вашингтона. (Кстати, этому небольшому парку самой судьбой было предназначено войти в историю физической оптики. Именно там 3 июня 1880 года изобретатель телефона Александр Белл впервые испытал устройство, которое он считал своим главным изобретением. Прибор, который Белл назвал фотофоном, передавал звук не по проводам, а по световому лучу. Сегодня белловский фотофон считают предтечей опто-волоконных систем связи.)

Читать еще:  Лечебная гимнастика при поражении коленного сустава

Таунс понял, что можно построить микроволновой генератор с помощью пучка молекул, имеющих несколько уровней энергии. Для этого их нужно разделить электростатическими полями и загнать пучок возбужденных молекул в металлическую полость, где они перейдут на нижний уровень, излучая электромагнитные волны. Чтобы эта полость работала как резонатор, ее линейные размеры должны равняться длине излучаемых волн. Таунс поделился этой мыслью с аспирантом Джеймсом Гордоном и научным сотрудником Гербертом Цайгером. На роль среды они избрали аммиак, молекулы которого при переходе с возбужденного колебательного уровня на основной испускают волны длиной 12,6 мм. Изготовить высококачественный объемный резонатор такой величины было не слишком просто, но все же возможно. В апреле 1954-го Таунс и Гордон (Цайгер тогда уже ушел из университета) запустили первый в мире микроволновой квантовый генератор. Этот прибор Таунс назвал мазером (MASER — Microwave Amplification by Stimulated Emission of Radiation).

Чарльз Таунс Хард

В Лаборатории колебаний Физического института АН СССР этой же темой занимались старший научный сотрудник Александр Прохоров и его аспирант Николай Басов. В мае 1952 года на Общесоюзной конференции по радиоспектроскопии они сделали доклад о возможности создания квантового усилителя СВЧ-излучения, работающего на пучке молекул все того же аммиака. В 1954 году, вскоре после выхода работы Таунса, Гордона и Цайгера, Прохоров и уже «остепенившийся» Басов опубликовали статью, где были приведены теоретические обоснования работы такого прибора. В 1964 году Таунс, Басов и Прохоров за эти исследования были удостоены Нобелевской премии.

От микроволн к свету

Не будет преувеличением сказать, что в середине 1950-х годов призрак оптического (в отличие от микроволнового) квантового генератора маячил в головах многих физиков — слишком многих, чтобы рассказать обо всех. Фактически не была решена лишь задача усиления вынужденного излучения с помощью положительной обратной связи. Поскольку длины световых волн измеряют десятыми долями микрона, изготовление объемного резонатора таких размеров было делом нереальным. Вероятно, возможность генерации света с помощью макроскопических открытых зеркальных резонаторов первым осознал американский физик Роберт Дике, который в мае 1956 года оформил эту идею в патентной заявке. В сентябре 1957 года Таунс набросал в записной книжке план создания такого генератора и назвал его оптическим мазером. Через год Таунс со своим старым другом и шурином Артуром Шавловым и независимо от них Прохоров выступили со статьями, содержащими теоретические обоснования этого метода генерации когерентного света.

Сам термин «лазер» возник даже раньше. Эту английскую аббревиатуру, Light Amplification by Stimulated Emission of Radiation (в дословном переводе «усиление света с помощью стимулированного испускания излучения», хотя лазерами все же принято называть не усилители, а генераторы излучения, замена слова amplification на generation дает непроизносимое звукосочетание lgser), придумал аспирант Колумбийского университета Гордон Гулд, который совершенно самостоятельно провел детальный анализ методов получения стимулированного излучения оптического диапазона. Поздней осенью 1957 года это слово появилось на страницах блокнота, где он записывал свои размышления и вычисления. В то время Гулд ничего не публиковал и поэтому не получил признания, которое, бесспорно, заслужил. Правда, в 1970—1980-х он добился утверждения своих патентных заявок и наконец-то стал купаться если не в славе, то в долларах.

История полупроводникового лазера

Принцип работы был сформулирован задолго до того, как появился первый настоящий лазер. Начало теории положил Альберт Эйнштейн, сформулировав в 1913 году гипотезу о том, как внутри звезд получается излучение. Явление, которое в гипотезе Эйнштейна отвечало за этот процесс, получило название «вынужденное», или индуцированное, излучение. Оно состоит из фотонов, которые испускают возбужденные атомы, возвращаясь обратно в стабильное состояние после возбуждения вынуждающими фотонами. Великий ученый утверждал, что вынуждающий и вынужденные фотоны всегда когерентны. Он не знал, что это знание положит начало лазерной революции.

Когерентность волн, поглощаемых и излучаемых, — принципиально важное для лазерной техники свойство. Оно означает совпадение направления, длины, фазы и поляризации обеих волн. Именно благодаря когерентности луч лазера не рассеивается.

Для того чтобы создать такое устройство, не хватало только положительной обратной связи.

На несколько десятилетий после Эйнштейна о вынужденном излучении как будто бы забыли, зато в начале 50-х годов прошлого столетия оно внезапно всех заинтересовало. Сначала родилась идея резонатора — усилителя вынужденного излучения. За разработку прибора для усиления вынужденного микроволнового излучения на пучке молекул аммиака получили Нобелевскую премию по физике двое советских ученых, Александр Прохоров и Николай Басов, и их американский коллега — Чарльз Таунс. После этого началась бешеная гонка открытий: о лазере, способном генерировать мощное излучение, мечтали сотни ученых. К тому времени стало понятно, что лазер должен состоять из рабочей среды (вещества, которое дает вынужденное излучение), источника энергии (устройства накачки) и резонатора, который усиливает вынужденное излучение.

Для того чтобы создать такое устройство, не хватало только положительной обратной связи. Волны оптического диапазона очень короткие (их длина измеряется в долях микрона), казалось невероятным построить резонатор таких же масштабов. Только в 1956 году американский ученый Роберт Дике понял, что совершенно необязательно конструировать микроскопический резонатор — он может быть и большим. Через год на полях в записной книжке физика Гордона Гулда впервые появилось слово «лазер».

Если Энштейна считают отцом лазерной теории, то отец лазерной техники — это Теодор Мейман, создатель первого твердотельного лазера. В качестве активной среды для первого лазера использовали рубиновый цилиндр. В качестве резонатора выступило серебряное напыление, которое Мейман нанес прямо на поверхность рубина. Весной 1960 года лазер Меймана дал первый в мире лазерный луч.

А в 1962 году в лаборатории General Electric в Скенектади физик Роберт Холл первым создал полупроводниковый лазер. Почти одновременно с этой задачей справились исследователи из MIT, компании IBM и уже знакомый нам Николай Басов в СССР, но научное сообщество признало первенство Холла. Лазер Холла работал на основе арсенида галлия (GaAs). Вынужденное излучение в нем создавалось не за счет перехода электрона в атомах на более высокие энергетические уровни и обратно, а благодаря особым свойствам полупроводниковых материалов. В полупроводниках электроны могут перемещаться между разрешенными энергетическими зонами или подзонами кристалла, выделяя и поглощая при этом фотоны.

Чтобы собрать полупроводниковый лазер, Холлу потребовалось не только знание физики, но и умение работать руками. В детстве он увлекался шлифовкой линз и даже сам построил телескоп, поэтому ручная работа с оптикой была для него не в новинку. В его руках кристалл арсенида галлия пробрел нужные формы: строго параллельные грани полупроводника обеспечили переход электронов между зоной проводимости и валентной зоной. Оставалось дать электронам первый импульс к движению — начать накачку. Холл пропустил через кристалл сильный электрический ток, при этом охлаждая материал, чтобы тот не расплавился. В сентябре 1962 года Холл получил первый лазерный диод, а статья о нем вышла в журнале Physical Review Letters.

Твердотельный лазер Меймана был великим изобретением, но его значение заключалось в первую очередь в proof of concept — доказательстве возможности реализации идеи. Лазерный диод Холла положил начало бурному росту лазерных технологий. Без них невозможны были бы хранение данных на оптических носителях и передача информации по оптоволоконным сетям. Диоды вошли в наши дома оптоволоконными кабелями телекоммуникационных сетей, CD-, DVD- и Blu-ray-дисками и проигрывателями.

Немного из истории лазерного излучения

Лазеров существует великое множество: газовые, твердотельные, волоконные, жидкостные, на парах металлов, на свободных электронах, полупроводниковые, на центрах окраски, газодинамические, эксимерные, химические и даже лазеры с накачкой ядерным взрывом. В этой части статьи мы рассмотрим различные виды лазеров, на каких длинах волн они светят и где применяются.

Конструкция газового лазера.

В газовых лазерах активной средой, как это явствует из названия, является газ. К ним относятся: гелий-неоновый лазер, лазер на углекислом газе, аргоновый, криптоновый и азотный лазеры, лазер на угарном газе.

В гелий-неоновом лазере усиление света происходит на атомах неона, гелий же работает как теплоотвод и служит для повышения давления. Это очень маломощные лазеры (от 1 до 100мВт), энергия к которым подводится с помощью продольного газового разряда. Накачка на верхний лазерный уровень происходит при столкновении электронов разряда с атомами неона. Основная длина волны – 0.6328 нм. Путем установки призмы или дифракционной решетки (частотно-селективных элементов) можно получить генерацию на длинах волн 0.5435, 0.5939, 0.6118, 1.1523, 1.52 и 3.3913 мкм

Лазер на углекислом газе (CO2-лазер) – один из самых популярных промышленных лазеров (сегодня его вытесняют волоконный и диодный лазеры). Они используются для обработки различных материалов и анализа состава атмосферы. Есть даже ряд проектов по использованию этих лазеров для управления молниями. Активной средой углекислотных лазеров является смесь газов: CO2, N2 и He. Иногда для улучшения разряда добавляют Xe и некоторые органические вещества. Накачка, как и в гелий-неоновом лазере, осуществляется путем создания разряда в среде (есть и экзотические методы, например, прямой впрыск электронного пучка). Разряд используют как продольный тлеющий (в лазерах в виде трубок), так и поперечный высокочастотный (в лазерах с полуволноводным резонатором). Накачка происходит за счет столкновения молекул углекислого газа и азота (с последующей передачей энергии на углекислый газ) с электронами разряда. Основная длина волны таких лазеров лежит в инфракрасном диапазоне и составляет 10.6 мкм. Для различных исследовательских целей используют частотно-селективные элементы, которые позволяют перестраивать длину волны в диапазоне от 9 до 11 мкм.

Аргоновый лазер также возбуждается электрическим разрядом, однако рабочие лазерные уровни соответствуют ионам, а не молекулам (атомам) газа. Чем выше степень ионизации атома (т.е. чем больше электронов с него улетело), тем более короткую длину волны может генерировать лазер. Всего длин волн, которые излучает лазер, 14, в порядке убывания интенсивности: 0.488, 0.5145, 0.3638-0.3336, 0.4965, 0.4765, 0.3851-0.3511, 0.5287, 0.5017, 0.3358-0.3003, 0.4727, 0.4658, 0.4579, 0.4545, 0.3055-0.2754 мкм. Используются, в основном, для литографии, в офтальмологии и для накачки других лазеров – Ti:Sa и лазеров на красителях.

Читать еще:  Лучшие лекарства для потенции

Криптоновый лазер устроен так же, как и аргоновый, но излучает, в основном, на длине волны 0.647 мкм. Более слабое излучение соответствует 0.416, 0.5309, 0.5682, 0.6764, 0.7525 и 0.7993 мкм. Также используются в литографии и офтальмологии.

Азотный лазер способен генерировать длину волны 0.3371 мкм и, более слабо, 0.316 и 0.357 мкм. Накачка осуществляется электрическим разрядом. При этом коэффициент усиления в таких лазерах настолько высок, что лазер может работать и без резонатора. Областью применения являются, в основном, научные исследования и измерение параметров атмосферы.

CO-лазер работает на смеси CO, N2 и He, его принцип работы аналогичен CO2-лазеру, но требуются криогенные температуры, в связи с чем он не нашел широкого распространения в промышленности, хотя и обладает существенно большим КПД. Длины волна лазера лежат в диапазонах 2,5—4,2 мкм и 4,8—8,3 мкм.

Лазеры на парах металлов

Эти лазеры сходны газовым лазерам, однако, как явствует из названия, в качестве активной среды в них используются пары различных металлов. В лазерной трубке присутствуют две (иногда больше) небольшие емкости с металлом буферный инертный газ. Одна из емкостей нагревается до высоких температур, металл начинает испаряться и диффундировать по всей трубке, осаждаясь во второй емкости. Когда ресурс первой емкости выработан, нагрев переключается на вторую емкость, а направление диффузии и осаждения меняется. Накачка лазера производится с помощью разряда в газе. При этом ион инертного газа сталкивается с атомом металла и передает ему энергию. В силу особенностей структуры энергетических уровней, такие лазеры работают только в импульсном режиме.

Самый известный лазер на парах металлов использует медь. Усиление в среде настолько большое, что он способен работать без резонатора. Это довольно мощный лазер, который излучает на длинах волн 0.5106 и 0.5782 мкм. Один из немногих лазеров на парах металла, который нашел свое применение вне научных и учебных лабораторий – он используется в скоростной фотографии и для накачки лазеров на красителях.

Вторым по популярности является гелий-кадмиевый лазер. Его спектр – 0.44 и 0.325 мкм, то есть ультрафиолетовая область, за счет чего он нашел свое применение в полиграфии и ультрафиолетовых детекторах.

Более экзотические лазеры на парах металлов используют пары ртути (в смеси с гелием, длины волн 0.567 и 0.615 мкм), селена (24 полосы от красного до УФ) и золота (0.627 нм). Кроме как в научных экспериментах применяются редко.

В этих лазерах накачка активной среды (газа) происходит за счет химических реакций. Способны генерировать непрерывную мощность вплоть до мегаватт. Основных представителя этого семейства два – кислород-ионный и фторводородный лазеры.

Кислород-ионный лазер работает за счет реакции газообразного хлора, молекулярного йода, раствора перекиси водорода и гидроксида калия. В результате химической реакции раствора с хлором (помимо тепла и хлорида калия) образуется кислород, который передает свою энергию молекулам йода, который затем и излучает на длине волны 1.315 мкм.

Лазер на фтористом водороде использует цепную реакцию: атомарный фтор соединяется с молекулярным водородом с образованием молекулы HF и атомарного водорода. Атомарный водород, в свою очередь, реагирует с молекулярным фтором, снова образуя HF и атомарный фтор. Для запуска реакции используется электрический разряд. Существует также и лазер на изотопе водорода – дейтерии, отличающийся от HF-лазера длинами волн: HF излучает в диапазоне 2.7-2.9 мкм, а DF – 3.6-4.2 мкм.

Этот класс лазеров использует химическую реакцию с неустойчивыми молекулами – эксимерами. Такие молекулы образуются с участием инертных газов и способны существовать только в возбужденном состоянии. Соединение атомов в молекулы происходит благодаря электрическому разряду. Используются повсеместно в ультрафиолетовой литографии и офтальмологии. Длины волн следующие: 0.193 мкм (ArF), 0.248 мкм (KrF), 0.308 мкм (XeCl), 0.353 мкм (XeF).

Лазеры с ядерной накачкой

Пожалуй, самый экзотичный вид лазеров. Накачка среды в них осуществляется посредством ядерных реакций. Способны излучать свет в диапазоне от рентгена до дальнего ИК. Есть два типа таких лазеров – одни из них используют ядерные процессы в реакторе, а другие – ядерный взрыв, после которого среда переходит в возбужденное состояние. Последние, разумеется, одноразовые.

Жидкостные лазеры (лазеры на красителях)

В качестве активной среды в таких лазерах используются, как это явствует из названиия, жидкости, имеющие какую-либо окраску. Самым популярным красителем является Родамин 6G, но я слышал о получении генерации даже на бренди. В маломощных лазерах используется кювета с жидкостью, а в мощных вариантах формируется тонкая струя, что позволяет избежать проблем с охлаждением. Для накачки используются другие лазеры – твердотельные и газовые. Спектр таких лазеров очень широк и составляет десятки нанометров. Это позволяет производить перестройку по длине волны или же генерировать сразу во всем спектре (при этом происходит генерация сверхкоротких импульсов). Различные разновидности красителя Кумарина полностью перекрывают диапазон длин волн от 0.435 до 0.565 нм. Различные Родамины светят в суммарной области 0.540-0.675 мкм, а прочие красители перекрывают весь оставшийся спектр вплоть до 0.940 мкм. Применяются, в основном, для создания лазерных часов, лазерной спектроскопии и генерации сверхкоротких импульсов в исследовательских и (изредка) промышленных целях.

конструкция твердотельного лазера с продольной диодной накачкой (почти как в зеленой лазерной указке)

В качестве активной среды используются кристаллы с добавлением активных веществ. При этом лазерные уровни образуются в активном веществе из-за воздействия на него внешней кристаллической решетки. Природные кристаллы для лазерных целей не подходят, поэтому их специальном образом выращивают, добиваясь при этом высокой однородности распределения примесей по кристаллу и однородности самого кристалла. Единственным способом ввести энергию в такие лазеры является свет. Накачка осуществляется с помощью ламп (импульсных и непрерывных), других лазеров и диодов.

Лазер на рубине был первым лазером оптического диапазона. Активным веществом являются ионы хрома, а кристалл – Al2O3. Для накачки применяют лампы-вспышки. Длина волны 0.6943 нм. Используется в голографии и для удаления татуировок.

Существует несколько лазеров на ионах неодима, различающихся матричными кристаллами и, соответственно, длиной волны. Накачка производится либо с помощью ламп, либо, что наиболее популярно на сегодняшний день, с помощью диодов. Самым популярным является Nd:YAG (неодим в аллюмо-иттриевом гранате). Основная длина волны 1.064 мкм, второстепенная – 1.32 нм. С помощью нелинейных кристаллов иногда удваивают частоту лазера (длина волны составляет 0.532 мкм), именно такая схема используется в китайских зеленых лазерных указках. Применяется в обработке материалов, дальномерах, научных исследованиях и для накачки других лазеров. Еще два лазера на неодиме – Nd:YLF и Nd:YVO применяются в основном для накачки Ti:Sa лазеров и имеют длины волн 1.047 (вторичная 1.053) и 1.064 мкм соответственно.

Отдельно стоит лазер на неодиме в стекле. Вместо кристалла здесь использовано аморфное стекло, что приводит к заметно более широкому спектру, чем у Nd:YAG. Длины волн отличаются совсем немного – 1.062 и 1.054 нм (в зависимости от типа стекла), но эти лазеры способны достигать энергий в импульсе вплоть до мегаджоулей (тераватты пиковой мощности). Используются для лазерной плавки и в попытках реализации лазерного термоядерного синтеза.

Еще три лазера используют в качестве матричного кристалла аллюмо-итриевый гранат (YAG), различаются они легирующими добавками. Иттербиевый лазер (Yb:YAG) имеет длину волны 1.03 мкм и используется для обработки материалов, спектроскопии и в дальномерах. Гольмиевый лазер (Ho:YAG) с длиной волны 2.1 мкм используется в медицине, а лазер на тулии (Tm:YAG) – в радарах (его длина волны 2 мкм).

Титан-сапфировый лазер (Ti:Sa) имеет сверхширокий спектр излучения – от 0.65 до 1.1 мкм. За счет этого его можно как перестраивать во всем диапазоне, так и выбирать какую-то длину волны, кроме того, он способен излучать сразу во всем спектре (при этом получаются сверхкороткие импульсы). Для его накачки используется множество других лазеров, а сам Ti:Sa нашел свое применение в научных исследованиях, дальномерах и спектроскопии. Из-за своей сложности применения в промышленности не нашли.

Конструкция Ti:Sa лазера.

Еще один тип лазеров использует в качестве матричного кристалла селенид цинка (ZnSe). В основном применяются два типа активных легирующих добавок – хром и железо. Диапазоны длин волн, им соответствующие – 1.9-3.6 мкм и 4-4.5 мкм. Используются для генерации сверхкоротких импульсов, что имеет применение в промышленности.

К твердотельным лазерам относится и волоконный лазер. Существенное отличие конструкции в том, что вместо короткого и толстого кристалла используется очень длинное и очень тонкое волокно (его длина может достигать километров). При этом в одном волокне выполнено сразу несколько волноводов – один из них – это активная среда лазера, легированная эрбием, а остальные проводят излучение накачки от лазерного диода, которое на пути следования постепенно проникает в основной волновод. Очень активно используются в промышленности для резки, гравировки и сварки. Кроме того, нашли свое применение в медицине и косметологии, используются в качестве усилителей в оптоволоконной связи. Длины волн от 1.53 до 1.56 мкм.

Конструкция полупроводникового лазера.

Самый распространенный тип лазеров. В основе конструкции лежит полупроводниковый диод с отражающими гранями, однако из-за особенностей применения как лазера и физики необходимых процессов, они сильно отличаются от своих радиотехнических прародителей. Накачиваются напрямую током – в активной среде (на p-n переходе) происходит рекомбинация электронов и дырок (пустых мест без электронов) с испусканием кванта света. Изначально работали лишь при криогенных температурах, однако сегодня этого не требуется. Излучают в различных диапазонах – от ближнего УФ до дальнего ИК и в терагерцовом (но заполняют спектр не полностью). Нашли широчайшее применение в телекоммуникациях, промышленности, научных исследованиях и быту. Активно используются для накачки других лазеров.

Лазеры на свободных электронах

Излучают в диапазоне от рентгена (доли ангстрема — единицы нанометров) и до терагерцовых волн. В основе конструкции лежит ондулятор (последовательность противоположно расположенных магнитов), через который летит поток электронов. За счет переменного магнитного поля происходит поперечное колебание электронов, которые излучают свет вдоль направления движения. Используются в кристаллографии и исследовании материалов. Так как крайне сложны, дорогостоящи и громадны, в промышленности не используются.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector