0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механизм действия и фармакокинетика

Механизм действия и фармакокинетика

Основы фармакокинетики создавались учёными разных специальностей в различных странах.

В 1913 немецкие биохимики Л. Михаэлис и M. Ментен предложили уравнение кинетики ферментативных процессов, широко используемое в современной фармакокинетике для описания метаболизма лекарственных средств.

Шведские физиологи Э. Видмарк, Д. Тандберг (1924) и T. Теорелл (1937) применяли системы дифференциальных уравнений при анализе различных способов введения лекарственных средств.

Американский физиолог В. Гамильтон и другие (1931) использовали метод статистических моментов для оценки параметров фармакокинетики по экспериментальным данным.

Основы метаболизма лекарственных средств были заложены английскими биохимиками X. Бреем, В. Торпом и К. Уайтом (1951).

Практические аспекты применения фармакокинетики для оптимизации фармакотерапии разрабатывали К. Лапп во Франции (1948—1956), А. ван Гемерт и др. в Дании (1950), Э. Крюгер-Тиммер (1960) и, собственно фармакокинетику, — Дост (1953—1968) в Германии (последний — автор термина «фармакокинетика»).

Развитие фармакокинетики до начала 50-х гг. 20 в. сдерживалось отсутствием высокочувствительных и селективных методов анализа микроконцентраций лекарственных веществ в биологических средах и недостаточной компьютеризацией исследований. С решением этих проблем фармакокинетика получила дальнейшее развитие. В России развитие фармакокинетики началось в 60-х гг. и связано с именами В. А. Филова, В. H. Соловьёва и В. П. Яковлева.

Методы исследования

Фармакокинетика содействует решению проблемы эффективности и безопасности фармакотерапии путём исследования зависимости терапевтического, токсического и побочных эффектов лекарственных средств от их концентраций в месте действия или в анализируемой биологической среде (чаще всего в крови) и расчёту оптимальных режимов введения препаратов для создания и поддержания оптимальных концентраций лекарственных веществ.

Для определения микроконцентраций лекарственных веществ и продуктов их метаболизма используют хроматографию, спектральный, иммунохимический, радиоизотопный и другие методы.

Фармакокинетические процессы

Всасывание

Во всех случаях, когда лекарственное средство вводится не в сосудистое русло, оно попадает в кровь путём всасывания; в случае твёрдой формы сначала происходит растворение (высвобождение), а затем молекулы лекарственного вещества проникают в системный кровоток, чаще всего путём простой диффузии из места введения, а иногда с помощью активного транспорта. Так называемые пролонгированные (ретардированные) лекарственные формы обеспечивают медленное, контролируемое поступление лекарственного вещества в организм и его биодоступность.

При приёме внутрь лекарственного вещества основного характера (амины) всасываются обычно в тонком кишечнике (сублингвальные лекарственные формы всасываются из ротовой полости, ректальные — из прямой кишки), лекарственные вещества нейтрального или кислого характера начинают всасываться уже в желудке.

Всасывание характеризуется скоростью и степенью всасывания (так называемой биодоступностью). Степень всасывания — это количество лекарственного вещества (в процентах или в долях), которое попадает в кровь при различных способах введения. Скорость и степень всасывания зависит от лекарственной формы, а также от других факторов. При приёме внутрь многие лекарственные вещества в процессе всасывания под действием ферментов печени (или кислоты желудочного сока) биотрансформируются в метаболиты, в результате чего лишь часть лекарственных веществ достигает кровяного русла. Степень всасывания лекарственного вещества из желудочно-кишечного тракта, как правило, снижается при приёме лекарства после еды.

Распределение по органам и тканям

В организме лекарственное вещество распределяется между кровью, межклеточной жидкостью и клетками тканей. Распределение зависит от относительного сродства молекул лекарственного вещества к биомакромолекулам крови и тканей. Необходимое условие реализации фармакологического действия лекарственного вещества — его проникновение в ткани-мишени; напротив, попадание лекарственного вещества в индифферентные ткани снижает действующую концентрацию и может привести к нежелательным побочным эффектам (например, к канцерогенезу).

Для количественной оценки распределения дозу лекарственного вещества делят на его начальную концентрацию в крови (плазме, сыворотке), экстраполированную к моменту введения, или используют метод статистических моментов. Получают условную величину объёма распределения (объём жидкости, в котором нужно растворить дозу, чтобы получить концентрацию, равную кажущейся начальной концентрации). Для некоторых водорастворимых лекарственных веществ величина объёма распределения может принимать реальные значения, соответствующие объёму крови, внеклеточной жидкости или всей водной фазы организма. Для жирорастворимых лекарственных средств эти оценки могут превышать на 1-2 порядка реальный объём организма благодаря избирательной кумуляции лекарственного вещества жировыми и другими тканями.

Метаболизм

Лекарственные вещества выделяются из организма либо в неизмененном виде, либо в виде продуктов их биохимических превращений (метаболитов). При метаболизме наиболее распространены процессы окисления, восстановления, гидролиза, а также соединения с остатками глюкуроновой, серной, уксусной кислот, глутатионом. Метаболиты, как правило, более полярны и лучше растворимы в воде по сравнению с исходным лекарственным веществом, поэтому быстрее выводятся с мочой. Метаболизм может протекать спонтанно, но чаще всего катализируется ферментами (например, цитохромами), локализованными в мембранах клеток и клеточных органелл печени, почек, лёгких, кожи, мозга и других; некоторые ферменты локализованы в цитоплазме. Биологическое значение метаболических превращений — подготовка липорастворимых лекарственных средств к выведению из организма.

Экскреция

Лекарственные вещества выводятся из организма с мочой, калом, потом, слюной, молоком, с выдыхаемым воздухом. Выведение зависит от скорости доставки лекарственного вещества в выделительный орган с кровью и от активности собственно выделительных систем. Водорастворимые лекарственные вещества выводятся, как правило, через почки. Этот процесс определяется алгебраической суммой трёх основных процессов: гломерулярной (клубочковой) фильтрации, канальцевой секреции и реабсорбции. Скорость фильтрации прямо пропорциональна концентрации свободного лекарственного вещества в плазме крови; канальцевая секреция реализуется насыщаемыми транспортными системами в нефроне и характерна для некоторых органических анионов, катионов и амфотерных соединений; реабсорбции могут подвергаться нейтральные формы лекарственных веществ. Полярные лекарственные вещества с молекулярной массой более 300 выводятся преимущественно с желчью и далее с калом: скорость выведения прямо пропорциональна потоку желчи и отношению концентраций лекарственного вещества в крови и желчи.

Остальные пути выделения менее интенсивны, но могут быть исследованы при изучении фармакокинетики. В частности, нередко анализируют содержание лекарственного вещества в слюне, поскольку концентрация в слюне для многих препаратов пропорциональна их концентрации в крови, исследуют также концентрацию лекарственных веществ в грудном молоке, что важно для оценки безопасности грудного вскармливания.

10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.

Фармакокинетика — это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

I. Пути введения лекарственных веществ – энтеральные (пероральный, сублингвальный, ректальный), парентеральные без нарушения целостности кожных покровов (ингаляционный, вагинальный) и все виды инъекций (подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, с введением в спинно-мозговой канал и др.). II. Всасывание лекарственных средств при разных путях введения в основном происходит за счет пассивной диффузии через мембраны клеток, путем фильтрации через поры мембран и пиноцитоза). Факторы, влияющие на всасывание: растворимость вещества в воде и липидах, полярность молекулы, величина молекулы, рН среды, лекарственная форма; биодоступность (количество неизмененного вещества в плазме крови относительно исходной дозы препарата), учитывающая потери вещества при всасывании из желудочно-кишечного тракта и при первом прохождении через печеночный барьер (биодоступность при внутривенном введении принимают за 100 %). Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы). Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию. III. Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация или метаболическая трансформация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп); результат биотрансформации – образование более полярных и водорастворимых соединений, легко удаляющихся из организма. В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов). IV. Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции; скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии. Для процессов реабсорбции важное значение имеет рН мочи (в щелочной среде быстрее выводятся слабые кислоты, в кислой – слабые основания); скорость выведения почками характеризует почечный клиренс (показатель очищения определенного объема плазмы крови в единицу времени). При выделении с желчью лекарственные вещества покидают организм с экскрементами и могут подвергаться в кишечнике повторному всасыванию (кишечнопеченочная циркуляция). В удалении лекарственных веществ принимают участие и другие железы, включая молочные в период лактации (возможность попадания в организм грудного ребенка лекарств); одним из принятых фармакокинетических параметров является период полувыведения вещества (период полужизни Т1/2), отражающий время, в течение которого содержание вещества в плазме снижается на 50 %.

Основные показатели фармакокинетики

– Константа скорости абсорбции(Ка), характеризующая скорость их поступле­ния в организм.

– Константа скорости элиминации (Кel), характеризующая скорость их био­трансформации в организме.

– Константа скорости экскреции(Кex), характеризующая скорость их выведе­ния из организма (через легкие, кожу, пищеварительный и мочевой тракт).

– Период полуабсорбции (Т1/2, a) как время, необходимое для всасывания их поло­винной дозы из места введения в кровь (Т1/2, a = 0,693/Ка).

– Период полураспределения (Т1/2, a) как время, за которое их концентрация в крови достигает 50 % от равновесной между кровью и тканями.

– Период полувыведения(Т1/2) как время, за которое их концентрация в крови уменьшается наполовину (Т1/2 = 0,693/Кel).

– Кажущаяся начальная концентрация (С), которая была бы достигнута в плаз­ме крови при их внутривенном введении и мгновенном распределении в орга­нах и тканях.

– Равновесная концентрация (Сss), устанавливаемая в плазме (сыворотке) крови при их поступлении в организм с постоянной скоростью (при прерывистом введении (приеме) через одинаковые промежутки времени в одинаковых до­зах выделяют максимальную (Сssmax) и минимальную (Сssmin) равновесные концентрации).

– Объем распределения (Vd) как условный объем жидкости, в котором необхо­димо растворить поступившую в организм их дозу (D) для получения концен­трации, равная кажущейся начальной (С0).

– Общий (Clt), почечный (Clr) и внепочечный (Cler) клиренсы, характеризую­щие скорость освобождения от них организма и, соответственно, выведение их с мочой и другими путями (прежде всего с желчью) (Clt = Clr + Cler).

– Площадь под кривой «концентрация-время» (AUC), связанная с их другими фа­рмакокинетическими характеристиками (объемом распределения, общим клиренсом), при их линейной кинетике в организме величина AUC пропор­циональна дозе, попавшей в системный кровоток.

– Абсолютная биодоступность (f) как часть дозы, достигшая системного крово­тока после внесосудистого введения (%).

Показателем элиминации лекарственного препарата является клиренс (мл/мин). Выделяют общий, почечный и печеночный клиренс. Общий клиренс есть сумма по­чечного и печеночного клиренсов и определяется как объем плазмы крови, который очищается от лекарственного препарата за единицу времени. Клиренс используется для расчета дозы лекарственного препарата, необходимой для поддержания его рав­новесной концентрации (поддерживающей дозы) в крови. Равновесная концентрация устанавливается, когда количество абсорбирующегося и количество вводимого пре­парата равны друг другу.

В изучении фармакокинетики лекарственных препаратов важное место занимает математическое моделирование.

Существует много математических методов и моделей, от простейших одномер­ных до разного уровня сложности многомерных.

Использование математического моделирования позволяет в деталях с выведе­нием характерных констант исследовать фармакокинетику лекарственных препа­ратов, как по времени, так и пространству (по органам и тканям).

Фармакодинамика — раздел, изучающий биологические эффекты веществ, их локализацию и механизм действия.

Основные Положения Фармакодинамики

I. Виды фармакологического действия лекарств (местное, резорбтивное, прямое и косвенное, рефлекторное, обратимое, необратимое, преимущественное, избирательное, специфическое действие). Во всех случаях лекарственное вещество взаимодействует с определенными биохимическими субстратами; активные группировки макромолекулярных субстратов, взаимодействующих с веществами, получили название рецепторов, а рецепторы, взаимодействие с которыми обеспечивает основное действие вещества, называются специфическими. Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином «аффинитет»; способность вещества при взаимодействии с рецептором вызывать тот или иной эффект называется внутренней активностью; вещество, при взаимодействии с рецептором вызывающее биологический эффект, называется агонистом (они и есть внутренне активные); агонизм может быть полным (вещество вызывает максимальный эффект) и частичным (парциальным). Вещества, при взаимодействии с рецептором не вызывающие эффекта, но устраняющие эффект агониста, называются антагонистами. II. Типовые механизмы действия лекарственных веществ (миметическое, литическое, аллостерическое, изменение проницаемости мембран, освобождение метаболита от связи с белками и др.). III. Фармакологические эффекты – прямые и косвенные. IV. Виды фармакотерапевтического действия (этиотропное, патогенетическое, симптоматическое, главное и побочное).

Читать еще:  Механизм развития патогенез рефлюкс эзофагита гэрб

Механизмы действия лекарственных средств.

Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.

Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.

Действие на специфические рецепторы. Рецепторы — макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.

Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, — антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.

Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к адреналину — адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами α12, β1, β2.

Выделяют также H1— и Н2-гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.

Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.

Физико-химическое действие на мембраны клеток. Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.

Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.

Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.

Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.

Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения «доза-эффект» для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.

Методы для изучения фармакодинамики должны обладать рядом важных свойств:

а) высокой чувствительностью — способностью выявлять большую часть тех отклонений от исходного состояния, на которое пытаются воздействовать, а также оценивать положительные изменения в организме.

б) высокой специфичностью — способностью относительно редко давать «ложноположительные» результаты.

в) высокой воспроизводимостью — способностью данным методом стабильно отображать характеристики состояния больных при повторных исследованиях в одинаковых условиях у одних и тех же больных при отсутствии какой-либо динамики в состоянии этих больных по другим клиническим данным.

Фармакокинетика и её этапы.

Фармакокинетика(«человек – лекарство») — изучает влияние организма на лекарственное вещество, пути его поступления, распределения, биотрансформации и выведения лекарств из организма. Физиологические системы организма в зависимости от их врожденных и приобретенных свойств, а также способов и путей введения лекарственных пре­паратов будут в разной степени изменять судьбу лекарствен­ного вещества. Фармакокинетика лекарственного вещества зависит от пола, возраста и характера заболевания.

Основным интегральным показателем для суждения о судьбе лекарственных веществ в организме является опреде­ление концентрации этих веществ и их метаболитов в жидкостях, тканях, клетках и клеточных органеллах.

Длительность действия препаратов зависит от его фармакокинетических свойств. Период полувыведения — время, необходимое для очищения плазмы крови от лекарственного вещества на 50%.

Этапы (фазы) фармакокинетики. Движение лекарственного вещества и изменение его молекулы в организме представляет собой ряд последовательных процессов всасывания, рас­пределения, метаболизма и экскреции (выведения) лекарственных средств. Для всех этих процессов необходимым условием служит их про­никновение через клеточные оболочки.

Прохождение лекарственных веществ через клеточные оболочки.

Проникновение лекарственных веществ через оболочки клеток регулируется естественными процессами диффузии, фильтрации и активного транспорта.

Диффузия основана на естественном стремлении любого вещества двигаться из области высокой концентрации в направлении к области более низкой концентрации.

Фильтрация. Водные каналы в местах тесного соединения прилегающих эпителиальных клеток пропускают через поры толь­ко некоторые водорастворимые вещества. Нейтральные или не­заряженные (т. е. неполярные) молекулы проникают быстрее, так как поры обладают электрическим зарядом.

Активный транспорт — этот механизм регулирует движение некоторых лекарственных веществ в клетки или из них против концентрационного градиента. Для реализации этого процесса требуется энергия, и он происходит быстрее, чем перенос веществ путем диффузии. Молекулы со сходным строением конкурируют за молекулы-переносчики. Механизм активного транспорта вы­сокоспецифичен для определенных веществ.

Некоторые органные особенности клеточных мембран.

Мозг и спинномозговая жидкость. Капилляры в мозге отлича­ются от большинства капилляров других участков организма тем, что их эндотелиальные клетки не имеют пространств, через ко­торые вещества проникают во внеклеточную жидкость. Тесно примыкающие друг к другу эндотелиальные клетки капилляров, соединенные с базальной мембраной, а также тонкий слой отростков астроцитов препятствуют контакту крови с мозговой тканью. Этот гематоэнцефалический барьер предотвращает проникновение некоторых веществ из крови в мозг и спинномозговую жидкость (СМЖ). Жиронерастворимые вещества через этот барьер не проникают. Напротив, жирорастворимые вещества легко проникают через гематоэнцефалический барьер.

Плацента. Хорионические ворсины, состоящие из слоя трофобластов, т.е. клеток, окружающих капилляры плода, погру­жены в материнскую кровь. Кровоток беременной и плода разделены барьером, осо­бенности которого те же, что у всех липидных мембран организма, т.е. он проницаем только для жирорастворимых веществ и не­проницаем для веществ, растворимых в воде (особенно если их относительная молекулярная масса (ОММ) превышает 600). Кроме того, плацента содержит моноаминоксидазу, холинэстеразу и систему микросомальных фер­ментов (сходную с таковой в печени) способную метаболизировать лекарственные вещества и реагирующую на препараты, которые принимает беременная.

Всасывание — процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами: а) лекарственной формой (таб­летки, свечи, аэрозоли); б) растворимостью в тканях; в) крово­током в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия. Таким путем проникают хорошо раство­римые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;

2) Активный транспорт. В этом случае перемещение веществ че­рез мембраны происходит с помощью транспортных систем, содер­жащихся в самих мембранах;

3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мел­кие гидрофильные молекулы лекарственных веществ). Интенсив­ность фильтрации зависит от гидростатического и осмотического давления;

4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают свое содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного ве­щества определяется его растворимостью в липидах, качеством свя­зи с белками плазмы крови, интенсивностью регионарного крово­тока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наи­более активно кровоснабжаются (сердце, печень, легкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Ле­карственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное со­единение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) — это комплекс физико-химических и биохими­ческих превращений, которым подвергаются лекарственные вещества в орга­низме. В результате образуются метаболиты (водорастворимые вещества), которые лег­ко выводятся из организма.

В результа­те биотрансформации вещества приобретают большой заряд (ста­новятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечет за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям: а) снижение растворимости препаратов в жирах и б) сниже­ние их биологической активности.

Этапы метаболизма:Гидроксилирование. Диметилирование. Окисление. Образование сульфоксидов.

Выделяют два типа метаболизма лекар­ственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстанов­ление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетичес­кие реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъ­югация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на централь­ную нервную систему и резко возрастает частота развития энцефа­лопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и пере­носимость одних и тех же лекарственных веществ у различных боль­ных неодинакова. Эти отличия определяются генетическими фак­торами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствитель­ности организма человека к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наслед­ственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов — ферментопатии. В за­висимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Среди наследственных дефектов ферментных систем часто встре­чается недостаточность глюкозо-6-фосфатдегидрогенезы (Г-6-ФДГ). Она проявляется массивным разрушением эритроцитов (гемолити­ческие кризы) при применении сульфаниламидов, фуразолидона и других препаратов. Кроме того, люди с недостаточностью Г-6-ФДР-чувствительны к пищевым продуктам, содержащим конские бобы, крыжовник, красную смородину. Существуют больные с недоста­точностью ацетилтрансферазы, каталазы и других ферментов в орга­низме. Атипичные реакции на лекарственные средства при наслед­ственных нарушениях обмена веществ встречаются при врожденной метгемоглобинемии, порфирии, наследственных негемолитических желтухах.

Элиминация. Различают несколько путей выведения (экскреции) лекарствен­ных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слезными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Читать еще:  Как правильно и сколько носить корсет

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он кон­центрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приема препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для аб­сорбции в кишечнике (например, неомицин). Под влиянием ферментов и бакте­риальной микрофлоры желудочно-кишечного тракта лекарствен­ные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному тран­спорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарствен­ные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через легкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ грудным молоком. Лекарственные вещества, содержащиеся в плазме кормящих жен­щин, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элими­нацию. Однако иногда лекарственные средства, попадающие в организм грудного ребенка, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного ве­щества из организма. Термином «почечный клиренс кре­атинина» определяют выведение эндогенного креатинина из плаз­мы. Большинство лекарственных веществ элиминируется либо че­рез почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и по­чечного клиренса, причем печеночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).

Не нашли то, что искали? Воспользуйтесь поиском:

Фармакодинамика

Фармакодинамика — раздел фармакологии, который изучает фармакологические эффекты лекарственных средств: локализацию, механизм и виды дей­ствия.

Каж­дое биологически активное вещество вызывает характерные именно для него фармакологические эффекты.

Механизмы действия лекарственных веществ — способы, кото­рыми вещества вызывают фармакологические эффекты. К основ­ным вариантам механизмов действия относятся действие на:

1) спе­цифические рецепторы,

3) ионные каналы,

4) транспортные системы.

Большинство лекарственных веществ действует на специфичес­кие рецепторы. Эти рецепторы представлены чаще всего функцио­нально активными белковыми молекулами; взаимодействие с ними дает начало биохимическим реакциям, которые ведут к возникно­вению фармакологических эффектов.

Различают специфические рецепторы, связанные с клеточными мем­бранами (мембранные рецепторы), и внутриклеточные рецепторы.

Мембранные рецепторы делят на: 1) рецепторы, сопряженные с ионными каналами, 2) рецепторы, сопряженные с ферментами, 3) рецепторы, взаимодействующие с G-белками.

К рецепторам, сопряженным с ионными каналами, относятся, в частности, N-холинорецепторы и ГАМКА -рецепторы.

При стимуляции N-холинорецепторов (никотиночувствительные холинорецепторы) открываются сопряженные с ними натриевые каналы. Вход ионов Na + в клетку обусловливает деполяризацию клеточной мембраны и возбудительный эффект.

ГАМКА -рецепторы непосредственно сопряжены с хлорными ка­налами. Стимуляция ГАМКА-рецепторов ведет к открытию Сl — -каналов, входу ионов Сl — , гиперполяризации клеточной мембраны и тормозному эффекту.

К рецепторам, которые сопряжены с ферментами, относятся, в частности, рецепторы инсулина, сопряженные с тирозинкиназой.

Рецепторы, взаимодействующие с G-белками, — М-холинорецепторы (мускариночувствительные холинорецепторы), адренорецепторы, дофаминовые рецепторы, опиоидные рецепторы и др.

G-белки, т.е. ГТФ-связывающие белки, локализованы в клеточ­ной мембране и состоят из α-β-γ-,субъединиц. При взаимодей­ствии лекарственного вещества с рецептором α -субъединица G-белка соединяется с ГТФ (GTP) и воздействует на ферменты или ионные . каналы. Один рецептор взаимодействует с несколькими G-белка­ми, а каждый комплекс а-субъединицы G-белка с ГТФ действует ;на несколько молекул фермента или на несколько ионных каналов. Таким образом осуществляется механизм амплифайера (усилите­ля): при активации одного рецептора изменяется активность мно­гих молекул фермента или многих ионных каналов.

Одними из первых были обнаружены G-белки, связанные с β 1-адренорецепторами сердца. При активации симпатической иннер­вации сердца возбуждаются β 1-адренорецепторы; через посредство G-белков активируется аденилатциклаза; из АТФ образуется цАМФ, активируется протеинкиназа, при действии которой фосфорилируются и открываются кальциевые каналы.

Увеличение входа ионов Са 2+ в клетки синоатриального узла уско­ряет 4-ю фазу потенциала действия — сокращения сердца учащаются. Открытие Са 2+ -каналов в волокнах рабочего миокарда ведет к уве­личению концентрации Са 2+ в цитоплазме (вход Са 2+ способствует высвобождению Са 2+ из саркоплазматического ретикулума). Ионы Са 2+ связываются с тропонином С (составная часть тропонин-тропомиозина); таким образом уменьшается тормозное влияние тропонин-тропомиозина на взаимодействие актина и миозина — сокраще­ния сердца усиливаются (рис. 3).

При активации парасимпатической иннервации сердца (блуж­дающие нервы) возбуждаются М2-холинорецепторы и через посред­ство G-белков аденилатциклаза угнетается — сокращения сердца урежаются и ослабляются (в основном ослабляются сокращения предсердий, так как парасимпатическая иннервация желудочков относительно бедна).

Таким образом, G-белки могут оказывать на аденилатциклазу как стимулирующее, так и угнетающее влияние. Стимулирующие G-белки обозначили как Gs -белки (stimulate), а угнетающие — Gi-белки (inhibit) (рис. 4).

При возбуждении М1-холинорецепторов, М3-холинорецепторов, α1-адренорецепторов через Gq белки активируется фосфолипаза С, которая способствует тому, что из фосфатидилинозитол-4,5-дифос-фата образуются инозитол-1,4,5-трифосфат и диацилглицерол. Инозитол-1,4,5-трифосфат стимулирует высвобождение ионов Са 2+ из саркоплазматического ретикулума (рис. 5, 6).

К внутриклеточным рецепторам относятся рецепторы кортико-стероидов и половых гормонов. В частности, рецепторы глюкокор-тикоидов локализованы в цитоплазме клеток. После соединения глюкокортикоида с цитоплазматическими рецепторами комплекс глюкокортикоид-рецептор проникает в ядро и оказывает влияние на экспрессию различных генов.

Способность веществ связываться с рецепторами (тенденция ве­ществ к связыванию с рецепторами) обозначают термином «аффи­нитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным. Для характеристики аффи­нитета используют показатель pKD — отрицательный логарифм кон­станты диссоциации, т.е. концентрации вещества, при которой за­нято 50% рецепторов.

Внутренняя активность — это способность веществ стимулировать рецепторы; определяется по величине фармакологического эффек­та, связанного с активацией рецептора. В обычных условиях нет прямой корреляции между аффинитетом и внутренней активнос­тью: вещество может занимать все рецепторы и вызывать слабый эффект, и, наоборот, вещество может занимать 1% рецепторов и вызывать максимальный для данной системы эффект.

Агонисты — вещества, обладающие аффинитетом и внутренней активностью.

Полные агонисты обладают аффинитетом и максимальной внут­ренней активностью. Частичные (парциальные) агонисты обладают аффинитетом и менее, чем максимальной внутренней активностью.

Антагонисты обладают аффинитетом, не обладают внутренней активностью и препятствуют действию полных или частичных агонистов (вытесняют агонисты из связи с рецепторами). Если дей­ствие антагониста устраняется при повышении дозы агониста, та­кой антагонизм называют конкурентным.

Частичные агонисты могут быть антагонистами полных агонистов. В отсутствие полного агониста частичный агонист стимулиру­ет рецепторы и вызывает слабый эффект. При взаимодействии с полным агонистом частичный агонист занимает рецепторы и пре­пятствует действию полного агониста. Например, окспренолол — частичный агонист β -адренорецепторов в отсутствие влияний сим­патической иннервации на сердце вызывает слабую тахикардию. Но при повышении тонуса симпатической иннервации окспренолол действует, как настоящий β -адреноблокатор, и вызывает брадикардию. Это объясняется тем, что частичный агонист окспренолол уст­раняет действие медиатора норадреналина, который по отношению к β 1 -адренорецепторам сердца является полным агонистом.

Агонисты-антагонисты — вещества, которые по-разному действу­ют на подтипы одних и тех же рецепторов: одни подтипы рецепто­ров они стимулируют, а другие — блокируют. Например, наркоти­ческий анальгетик налбуфин по-разному действует на подтипы опиоидных рецепторов. Каппа-рецепторы налбуфин стимулирует (и поэтому снижает болевую чувствительность), а мю-рецепторы блокирует (и поэтому менее опасен в плане лекарственной зависи­мости).

Примером влияния веществ на ферменты может быть действие антихолинэстеразных средств которые блокируют ацетилхолинэстеразу (фермент, расщепляющий ацетилхолин) и таким об­разом усиливают и удлиняют действие ацетилхолина.

Известны лекарственные вещества, которые стимулируют или бло­кируют ионные каналы клеточных мембран, т.е. каналы, которые из­бирательно проводят ионы Na + , K + , Са 2+ (натриевые, калиевые, каль­циевые каналы) и др. Например, местноанестезирующие и некоторые противоаритмические вещества (прокаин, хинидин) блокируют на­триевые каналы. В медицинской практике применяют блокаторы каль­циевых каналов, активаторы калиевых каналов.

Примером влияния веществ на транспортные системы может быть действие трициклических антидепрессантов, которые бло­кируют обратный транспорт норадреналина и серотонина через пресинаптическую мембрану.

Возможны и другие механизмы действия. Например, диуретик маннитол увеличивает диурез за счет повышения осмоти­ческого давления в почечных канальцах.

Механизмы действия разных лекарственных веществ изучены в разной степени. В процессе их изучения представления о механизмах действия могут не только усложняться, но и существенно меняться.

Понятие «локализация действия» означает преимущественное место (места) действия тех или иных лекарственных веществ. На­пример, сердечные гликозиды действуют в основном на сердце.

К понятию «виды действия» относятся местное и общее (резор-бтивное) действие, рефлекторное действие, основное и побочное действие, прямое и косвенное действие.

Примером местного действия может быть действие местноанес-тезирующих средств.

Большинство лекарств оказывают общее (резорбтивное) действие, которое обычно развивается после всасывания (резорбции) веще­ства в кровь и его распространения в организме.

Как при местном, так и при резорбтивном действии вещества могут возбуждать различные чувствительные рецепторы и вызы­вать рефлекторные реакции.

Основное действие лекарственного вещества — его эффекты, которые используются в каждом конкретном случае. Все остальные эффекты при этом оценивают как проявления побочного действия.

Лекарственные вещества могут оказывать на те или иные орга­ны прямое действие. Кроме того, действие лекарственных веществ может быть косвенным. Например, сердечные гликозиды оказыва­ют на сердце прямое действие, но, улучшая работу сердца, эти ве­щества повышают кровоснабжение и функции других органов (кос­венное действие).

Особенности и преимущества Ксеникала: Механизм действия. Фармакокинетика и фармакодинамика

Механизм действия.
Фармакокинетика и фармакодинамика.

Химическое строение Ксеникала

Молекулярная масса Ксеникала (С29Н53NО5) равна 495.74. Он содержит N-формил-L-лейцин-эфирную боковую цепь и бета-лактоновое кольцо, встроенное в углеводородный скелет (1) (рисунок 1). Бета-лактоновое кольцо очень важно для антилипазной активности Ксеникала (2,3). Ксеникал обладает высокой липофильностью (2), а его растворимость в воде очень мала.

Рисунок 1. Структурная формула тетрагидролипстатина (Ксеникала, Орлистата)

Уникальный механизм действия

Механизм действия обусловлен способностью блокировать всасывание жиров, поступающих с пищей. Желудочно-кишечные липазы — ключевые ферменты, участвующие в гидролизе триглицеридов пищи, высвобождении жирных кислот и моноглицеридов, которые затем всасываются через слизистую оболочку кишечника (рисунок 2)

Рисунок 2. Переваривание триглицеридов (ТГ) и всасывание продуктов их расщепления – жирных кислот (ЖК) и моноглицеридов (МГ)

Подписи к рисунку:
Просвет кишечника
Желудочно-кишечная липаза
МГ
ЖК
Желчные кислоты
Мицеллы
Клетка слизистой оболочки
МГ
ЖК
Лимфатическая система

Благодаря структурному сходству Ксеникала с триглицеридами, препарат взаимодействует с активным участком фермента, ковалентно связываясь с его сериновым остатком. Связывание носит медленно обратимый характер, но в физиологических условиях подавляющий эффект препарата в ходе пассажа через желудочно-кишечный тракт остается неизменным. Вследствие этого около 30% триглицеридов пищи не переваривается и не всасывается, что позволяет создать дополнительный дефицит калорий по сравнению с применением только диеты (4).

Высокая селективность. Ксеникал не действует или почти не действует на другие ферменты желудочно-кишечного тракта (например, амилазу, трипсин, химотрипсин и фосфолипазы) (2), даже когда дозы препарата в 100 раз превышают те, которые подавляют липазную активность. Таким образом, Ксеникал не влияет на гидролиз и всасывание углеводов, белков и фосфолипидов (2).

Несистемный эффект. Блокируя активный участок молекулы липазы, Ксеникал подавляет расщепление триглицеридов на моноглицериды и жирные кислоты, которые могли бы всосаться в кровь (рисунок 3)

Рисунок 3. Механизм действия Ксеникала

Подписи к рисунку:
Просвет кишечника
Желудочно-кишечная липаза + Ксеникал
МГ
Желчные кислоты
Мицеллы
Клетка слизистой оболочки
ЖК
Лимфатическая система

Ингибирование липазы имеет место в желудочно-кишечном тракте, но не системно. Таким образом, интактные триглицериды и другие невсосавшиеся липиды проходят через желудочно-кишечный тракт и выводятся с калом. После отмены Ксеникала активность липазы быстро восстанавливается благодаря непрерывной секреции фермента.

Необходимость умеренной коррекции питания. Селективная блокада одного из компонентов пищи представляет собой новаторский подход к лечению ожирения. Поскольку Ксеникал блокирует всасывание жиров пищи, необходимости в резком ограничении потребления жиров нет. Это облегчает пациентам соблюдение диеты.

Фармакодинамика

Подавление желудочно-кишечных липаз. Наличие липаз в желудочно-кишечном тракте необходимо для проявления эффекта Ксеникала. Поскольку секреция липаз стимулируется присутствием пищи в желудочно-кишечном тракте, Ксеникал следует принимать во время еды. Несколько исследований показали, что фармакологическая активность Ксеникала не меняется, если его принимать в пределах до 1 часа после приема пищи. Кроме того, после отмены Ксеникала всасывание жиров пищи быстро нормализуется, а нежелательные явления со стороны желудочно-кишечного тракта, вызванные фармакологическим эффектом препарата, быстро исчезают (5).

Читать еще:  Лекарство для потенции

Переносимость, связанная с механизмом действия препарата. Переносимость Ксеникала связана с его механизмом действия. В ряде исследований (5) было установлено, что содержание жира в пище напрямую связано с частотой и выраженностью нежелательных явлений со стороны желудочно-кишечного тракта при приеме каждой дозы Ксеникала (см. раздел «Безопасность и переносимость»). При увеличении содержания жиров в пище общее количество жира, выводимое с каловыми массами, возрастает. Однако количество жира в каловых массах в процентах от жиров пищи не меняется и составляет около 30% (5).

Гиполипидемический эффект Ксеникала. Помимо уменьшения уровня липидов в крови, которого можно ожидать от снижения массы тела как такового, Ксеникал оказывает собственный, дополнительный положительный эффект на гиперлипидемию. Холестерин плохо растворяется в растворах желчных солей. Его растворимость возрастает прямо пропорционально количеству присутствующих там свободных жирных кислот и моноглицеридов. Подавляя желудочно-кишечные липазы, Ксеникал снижает количество свободных жирных кислот и моноглицеридов в просвете кишечника и тем самым уменьшает растворимость и последующее всасывание холестерина. Кроме того, назначение Ксеникала приводит к созданию нефизиологической взвеси из не всосавшихся жиров в просвете кишечника. Вследствие этого всасывание неполярных липидов типа холестерина уменьшается.

Отсутствие усиления пролиферации клеток толстой кишки. Поскольку Ксеникал частично ингибирует гидролиз и всасывание жиров в кишечнике, количество жира, с которым контактирует слизистая оболочка толстой кишки, увеличивается. Роль большого потребления жиров в развитии рака толстой кишки неоднозначна и недавно оспаривалась (6). Одним из многих предложенных механизмов является увеличение концентрации желчных кислот, которые могут оказывать токсическое действие на слизистую оболочку толстой кишки. Вот почему было изучено действие Ксеникала на пролиферацию клеток толстой кишки. Назначение терапевтических доз (120 мг 3 раза в сутки) Ксеникала больным ожирением не влияло на пролиферацию клеток в биоптатах толстой кишки, несмотря на то, что количество жира и свободных жирных кислот в кале увеличивалось (7). Более того, содержание желчных кислот достоверно уменьшалось. Корреляции между изменениями состава каловых масс и индексом пролиферации клеток толстой кишки не было.

Фармакокинетика

Если бы Ксеникал подвергался системному всасыванию, можно было бы ожидать, что он будет подавлять системные липопротеиновые и печеночные липазы, из-за их структурного сходства с желудочно-кишечными. Поэтому важное значение для подтверждения безопасности Ксеникала имеет оценка степени его всасывания и системной активности (8).

Всасывание

Концентрации в плазме. Концентрации неизмененного Ксеникала в плазме мониторировались радиоизотопным методом у здоровых добровольцев и добровольцев с избыточной массой тела или ожирением. В исследованиях с разовым приемом препарата (в дозах до 800 мг) здоровыми добровольцами концентрации активного вещества в плазме оставались меньше 5 нг/мл (9). При многократном приеме кумуляции препарата не происходило, а концентрации неизмененного Ксеникала в плазме составляли менее 1% общей радиоактивности (10).

В клинических исследованиях, где анализировали пробы плазмы через 1 и 2 года применения Ксеникала, неизмененный препарат после приема терапевтических доз (120 мг 3 раза в сутки) обнаруживался в плазме лишь спорадически, а его концентрации в плазме были крайне низкими (менее 10 нг/мл). Признаков кумуляции препарата не было, что также соответствует пренебрежимо малому всасыванию (5).

Отсутствие влияния на активность системных липаз. В терапевтических дозах Ксеникал не влиял на активность системных печеночных липаз или липопротеинлипазы у здоровых добровольцев (2).

Максимальные концентрации в плазме после приема терапевтических доз Ксеникала намного ниже, чем 50%-ные подавляющие концентрации in vitro, которые для панкреатических, печеночных или липопротеиновых липаз составляют 120 мг/мл (2). Отсутствие системного всасывания и действия на активность системных липаз сводит к минимуму возможность системных побочных эффектов, даже при длительном приеме препарата.

Распределение

Объем распределения Ксеникала определить нельзя, поскольку препарат всасывается минимально и не имеет определенной системной фармакокинетики (5).

Метаболизм

Вероятнее всего, Ксеникал метаболизируется, в основном, в стенке желудочно-кишечного тракта. В плазме в минимальных концентрациях выявлены два его метаболита — М1 и М3, на которые приходится около 42% всосавшегося в кровоток препарата (10). М1 и М3 обладают чрезвычайно слабой антилипазной активностью, которая в 1000 и 2500 раз, соответственно, ниже таковой Ксеникала (5). Они считаются фармакологически неактивными.

Выведение

Перорально принятая доза Ксеникала почти полностью (около 97%) выводится с калом, причем 83% элиминируется в виде неизмененного препарата (5).

Лекарственные взаимодействия

Были изучены возможные эффекты Ксеникала в отношении часто используемых препаратов, в частности, имеющих узкий терапевтический индекс и часто назначаемых больным ожирением. Никаких клинических значимых взаимодействий в этих исследованиях обнаружено не было.

Таблица 3. Препараты, не вступающие во взаимодействие с Ксеникалом

Препараты с узким
терапевтическим индексом
Препараты, часто используемые
у больных ожирением
дигоксин (11)глибурид (9)
фенитоин (12)антигепертензианые препараты (атенолол,
каптоприл, фуросемид, нифедипин замедленного
высвобождения) (14,15)
варфарин (13)оральные контрацептивы (16)

Кроме того, Ксеникал не взаимодействует с алкоголем (2). Ксеникал увеличивает биодоступность правастатина на 30%. При назначении Ксеникала в комбинации с правастатином гиполипидемический эффект усиливается (2).

Токсикология

В лабораторных бактериологических исследованиях и в экспериментах на животных признаков мутагенности для бактерий или млекопитающих, аномального синтеза ДНК, хромосомных аберраций или патологического образования микроядрышек в клетках мышей выявлено не было (5). Исследования генотоксичности и канцерогенности на животных, в которых системная экспозиция к Ксеникалу во много раз превышала таковую в исследованиях у человека, не обнаружили никаких признаков канцерогенности. Риск развития злокачественных новообразований при назначении Ксеникала самкам мышей и крыс, предрасположенным к раку молочной железы, не увеличивался (5).

У потомства животных, которым давали Ксеникал в дозах, намного превышающих эквиваленты рекомендованных для человека, явлений эмбриотоксичности и тератогенности не отмечалось (5). Это позволяет предполагать, что препарат не будет обладать тератогенным действием и у человека. Однако, Ксеникал не следует назначать во время беременности, поскольку клинические исследования у беременных женщин не проводились.

2. Фармакокинетика лекарственных средств

Фармакокинетика — это раздел фармакологии, изучающий закономерности абсорбции, распределения, превращения (биотрансформации) и экскреции (элиминации) лекарственных веществ в организме человека и животных.

Основная задача фармакокинетики — выявление связей между концентрацией лекарственного средства или его метаболита в биологических жидкостях и тканях и фармакологическим эффектом.

Absorbeo (лат.) всасывать.

Экспериментальная фармакокинетика изучает различные аспекты превращения лекарственных веществ в организме животных (приматов, собак, кроликов, крыс, мышей и др.) в норме и при моделировании различных патологических состояний.

Клиническая фармакокинетика занимается исследованием процессов поступления, распределения, биотрансформации и экскреции лекарственных средств в организме больного.

а) Механизм проникновения лекарственных веществ через биомембраны

При всех путях введения Л.С. должны проникнуть через разнообразные биологические мембраны.

В настоящее время наиболее перспективной считается мозаичная ,или жидкомозаичная, модель биомембраны.

Согласно этой модели, в основе мембраны лежит прерывистый бислой липидов, в котором, “плавают” отдельные белковые молекулы. Липиды внутри такой мембраны находятся в жидком состоянии, что придает мембране в целом динамичность и подвижность.

Молекулы лекарственных веществ через биологические мембраны могут проникать различными способами:

Пассивная диффузия — транспорт через биологические мембраны, вызванный движением частиц, например под влиянием тепла и разности концентраций транспортируемого вещества по обе стороны мембраны. С участием пассивной диффузии транспортируются, например, Л.В., являющиеся слабыми органическими кислотами (кислота ацетилсалициловая, кислота бензойная) и слабыми органическими основаниями (амидопирин, аминазин).

Облегченная диффузия — транспорт Л.В. через биомембраны с участием молекул специфических переносчиков. Как и при пассивной диффузии перенос веществ происходит по концентрационному градиенту, но скорость выше, чем при простой диффузии. Транспорту путем облегченной диффузии подвергаются клеточные метаболиты, поступающие из плазмы крови (глюкоза и другие моносахариды, глицерин, аминокислоты, витамины и др.) Обменная диффузия — молекулы переносной системы транспортируют молекулы Л.В. на противоположную внутреннюю сторону мембраны, а сами образуют комплекс с другой молекулой подобной структуры и переносят ее на внешнюю сторону мембраны, т.е. в межклеточное пространство.

Активный транспорт — перенос молекул Л.В. через биомембраны против градиентов их химических концентраций, сопряженный с затратой метаболической энергии (транспорт Iв фоликулы щитовидной железы из плазмы крови).

Пиноцитоз — это адсорбция осуществляемая путем выпячивания (инвагинации) поверхности биомембраны с последующим образованием везикулы вокруг транспортируемого вещества, как при фагоцитозе (Захват макромолекул — белки и нуклеиновые кислоты с диаметром частиц не более 750 нм), жирные кислоты и жирорастворимые витамины, липосомы — лекарственная форма, представляющая собой фосфолипидные пузырьки с включенными в их полость Лек. и БАВ.

б) Распределение лекарственных веществ в организме.

Большинство Л.В. в организме животных распределяется неравномерно. Л.В. достигают концентрации, обеспечивающей эффективные изменения за разное время в различных органах и тканях. Что объясняется наличием гистогематических барьеров (стенка капилляров, клеточные мембраны, гематоэнцефалический и плацентарный барьеры и др), функциональным состоянием и кровоснобжением органа, сродством молекул Л.В. с биохимическими структурами органов и тканей.

При отдельных патологических состояниях ослабляются существующие в норме барьеры и возникают патологические барьеры за счет разрастания соединительной ткани вокруг очагов воспаления.

Важным фактором в распределении Л.В. является образование комплексов белок- молекула Л.В. Они образуются в крови, межклеточных пространствах, в цитоплазме, иногда в ядре (СА, антибиотики и др).

Связывание Л.В. с белками уменьшает терапевтический эффект, замедляет выведение их из организма, а также участие в процессах биотрансформации, поскольку в этих процессах могут принимать участие только свободные молекулы.

Некоторые лекарственные вещества в больших количествах аккумулируются в тканях и органах. Например, мышьяк депонируется в волосяном покрове, йод — в щитовидной железе, хром — в эритроцитах. Наркотические вещества обладают липотропным действием, а поэтому депонируются в местах сосредоточения липидов. Кумуляция Л.В. используется в терапевтической и диагностической практике.

Следует учитывать, что накопление Л.В. в определенных органах и тканях может оказывать специфическое действие только при наличии в данной ткани внутриклеточных рецепторов, с которыми и может взаимодействовать Л или БАВ.

в) Превращение лекарственных веществ в организме.

Большинство Л.С. подвергается в организме определенным химическим превращениям. В биотрансформации Л.С. в организме человека и животных принимают участие различные органы и ткани — печень, легкие, кожа, почки, плацента. Наиболее активно процессы биотрансформации Л.С. протекают в печени, что связано с выполнением этим органом детоксикационной, барьерной и экскреторной функций.

Выделяют два основных вида превращения лекарственных препаратов:

биотрансформацию ( метаболическую трансформацию);

Биотрансформация — превращение веществ происходит в основном за счет окислительно-восстановительных реакций и гидролиза. В результате этих реакций Л.С. может утратить свои первоначальные фармакодинамические свойства (инактивация, или детоксикация) или приобрести новые (модификация); при этом фармакологически неактивный препарат (промедикамент) может превратиться в активный (биологическая активация) или приобрести токсические свойства (летальный синтез).

Окисляется спирт этиловый, гистамин, кодеин.

Восстанавливаются прогестерон, хлоралгидрат.

Гидролизуются сложные эфиры (новокаин, атропин, кислота ацетилсалициловая).

2. Конъюгация — это биосинтетический процесс, сопровождающийся присоединением к Л.С. или его метаболитам ряда химических группировок или молекул биогенных соединений, имеющихся в организме. В результате конъюгации образуются молекулярные формы, легко удаляемые из организма путем экскреции.

Так левомицетин соединяется с сульфатами; морфин с глюкуроновой кислотой и т.д.

г) Выведение лекарственных веществ из организма.

Экскреция Л.С. и их метаболитов через различные выделительные системы является заключительным этапом фармакокинетического процесса, приводящего к полной элиминации Л. из организма. Закономерности выделения различных веществ неодинаковы. Они зависят в основном от физико-химических свойств препаратов, у различных видов животных выделение Л.В. происходит также неодинаково.

Выделение лекарств и их метаболитов осуществляется различными путями: через почки, легкие, кожу, кишечник, слюнные, потовые, слезные, сальные железы, а также молочные железы при лактации.

Почки — основной путь удаления из организма Л.С.

С мочей выделяются различные соли, гликозиды, алкалоиды, нитрофураны и т.д.

Выведение неизмененных Л.С. из печени с желчью имеет важное практическое значение при применении антибиотиков (тетрациклины, эритромицины), концентрирующихся в желчи и оказывающих здесь свое антимикробное действие.

Через легкие удаляются в основном летучие и газообразные вещества (средства для ингаляционного наркоза).

Отдельные препараты выделяются слюнными железами (йодиды, С.А.), потовыми железами (противолепрозное средство- дитофал), слезными железами (рифампицин), железами желудка (хинин, никотин), кишечника (слабые органические кислоты и основания) и т.д.

Возможность выведения Л.С. молочными железами в период лактации используется при лечении мастита. С другой стороны , поступление Л.В. в организм новорожденного может вызвать неблагоприятные побочные явления, в том числе аллергизацию организма.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector