0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какой может быть жидкость

Основные свойства жидкостей

Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них – способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Текучесть

От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.

Сохранение объема

Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении – уменьшается.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Свободная поверхность и поверхностное натяжение

Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.

Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.

Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.

Испарение и конденсация

Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.

Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.

Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.

Кипение

Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.

Смачивание

Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.

Смешиваемость

Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых – вода и масло.

Диффузия

Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Волны на поверхности

Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.

Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.

Волны плотности

Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно – ударной.

Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

В заключение

Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет — ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.

Основные физические свойства жидкостей

Одной из основных характеристик жидкости является ее плотность. Плотностью жидкости называют массу жидкости заключенную в единице объема.

Удельным весом называют вес единицы объема жидкости, который определяется по формуле:

С увеличением температуры удельный вес жидкости уменьшается.

Связь между плотностью и удельным весом

1. Сжимаемость — свойство жидкости изменять свой объем под действием давления. Сжимаемость жидкости характеризуется коэффициентом объемного сжатия, который определяется по формуле

где V — первоначальный объем жидкости,
dV — изменение этого объема, при увеличении давления на величину dP.

Величина обратная βV называется модулем объемной упругости жидкости:

Модуль объемной упругости не постоянен и зависит от давления и температуры. При гидравлических расчетах сжимаемостью жидкости обычно пренебрегают и считают жидкости практически несжимаемыми. Сжатие жидкостей в основном обусловлено сжатием растворенного в них газа.

Сжимаемость понижает жесткость гидропривода, т.к., на сжатие затрачивается энергия. Сжимаемость может явиться причиной возникновения автоколебаний в гидросистеме, создает запаздывание в срабатывании гидроаппаратуры и исполнительных механизмах.

Иногда сжимаемость жидкостей полезна — ее используют в гидравлических амортизаторах и пружинах.

Читать еще:  Классификация и клиническая картина

2. Температурное расширение — относительное изменение объема жидкости при увеличении температуры на 1°С при Р = const. Характеризуется коэффициентом температурного расширения

Поскольку для капельных жидкостей коэффициент температурного расширения ничтожно мал, то при практических расчетах его не учитывают.

3. Сопротивление растяжению. Особыми физическими опытами было показано, что покоящаяся жидкость (в частности вода, ртуть) иногда способна сопротивляться очень большим растягивающим усилиям. Но в обычных условиях такого не происходит, и поэтому считают, что жидкость не способна сопротивляться растягивающим усилиям.

Рис. 1.6. Силы поверхностного натяжения

4. Силы поверхностного натяжения — эти силы стремятся придать сферическую форму жидкости. Силы поверхностного натяжения обусловлены поверхностными силами и направлены всегда внутрь рассматриваемого объема перпендикулярно свободной поверхности жидкости. Рассмотрим бесконечно малый объем жидкости на свободной поверхности. На него будут действовать силы со стороны соседних объемов. В результате, если сложить вектора всех сил действующих на рассматриваемый объем, то суммарная составляющая сила будет направлена перпендикулярно внутрь рассматриваемого объема.

5. Вязкость жидкости — свойство жидкости сопротивляться скольжению или сдвигу ее слоев. Суть ее заключается в возникновении внутренней силы трения между движущимися слоями жидкости, которая определяется по формуле Ньютона

где S — площадь слоев жидкости или стенки, соприкасающейся с жидкостью, м 2 ,
μ- динамический коэффициент вязкости, или сила вязкостного трения,
d /dy — градиент скорости, перпендикулярный к поверхности сдвига.

Отсюда динамическая вязкость равна

где τ — касательные напряжения жидкости, τ = T/S.

При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью (рис.1.7). Скорость уменьшается по мере уменьшения расстояния y от стенки. При этом при y = 0, скорость падает до нуля, а между слоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений τ.

Идеальная жидкость – жидкость, в которой силы трения пренебрежимо малы.

Таких жидкостей нет в природе. Реальные жидкости только в той или иной мере приблизительно соответствуют этой модели. Причина появления такого понятия – сложность расчета движения реальной жидкости. Там, где это возможно без ущерба для точности расчетов, применение допущения о равенстве нулю вязкости существенно упрощает решение.

Замечание. Совсем не обязательно вязкость жидкости должна быть очень мала для того, чтобы можно было считать ее идеальной. При малых скоростях даже у маловязких жидкостей влияние сил трения достаточно велико. И наоборот, при больших скоростях, когда силы трения малы по сравнению с силами инерции, расчет может быть выполнен без учета трения. Один из примеров – решение задачи встречи кумулятивного снаряда с бронеплитой аналогично решению задачи определения движения воды в стакане при его наполнении из водопроводного крана.

ОСОБЫЕ СОСТОЯНИЯ ЖИДКОСТИ

Под особыми состояниями жидкости обычно понимают случаи двухфазного состояния. Это может быть движение газожидкостной смеси или транспорт жидкостью твердых частиц.

Насыщение жидкости газами (воздухом) не поглощаемых жидкостью. Чаще всего это проникновение в жидкость пузырьков воздуха и их движение с большими скоростями, препятствующими их разделению.

Транспорт твердых частиц (наносов).

Обычно это насыщение потока со дна канала или русла. (Например – размыв русла реки).

Образование в жидкости разрывов, заполненных парами жидкости (КАВИТАЦИЯ).

При снижении давления и повышении температуры жидкости повышается вероятность вскипания жидкости. Это явление может наблюдаться при движении тел в жидкости (например: лопасти гребного винта, подводное крыло) или при распространении в жидкости звуковой волны высокой интенсивности (обычно это явление наблюдается при распространении ультразвуковой волны). Это явление в технике в абсолютном большинстве случаев нежелательно, т.к. захлопывание паровых пузырьков приводит к локальному повышению давления в жидкости и разрушению деталей и конструкций. Подробнее о механизме повышения давления можно узнать в разделе, посвященном гидроудару.

Образование в воде кристаллов льда.

Это явление возникает при снижении температуры воды или при повышении давления. При этом получается двухфазная система. Чаще всего это наблюдается при интенсивном перемешивании воды. В обычных условиях лед образуется на поверхности, т.к. вода, в отличие от других жидкостей, имеет наибольшую плотность при температуре около 4 0 С. Благодаря этому, вода, находящаяся при температуре замерзания, всплывает на поверхность.

Величина обратная динамическому коэффициенту вязкости (1/μ) называется текучестью жидкости.

Отношение динамического коэффициента вязкости к плотности жидкости называется кинематическим коэффициентом вязкости:

Величина ν (произносится «ню») равная 1см²/с называется стоксом (Ст), а 0,01 Ст — 1 сантистоксом (сСт).

Процесс определения вязкости называется вискозиметрией, а приборы, которыми она определяется вискозиметрами. Помимо оценки вязкости с помощью динамического и кинематического коэффициентов пользуются условной вязкостью — градусы Энглера ( Е). Вязкостью, выраженной в градусах Энглера, называется отношение времени истечения 200 см³ испытуемой жидкости через капилляр d = 2,8 мм к времени истечения такого же объема воды при t = 20 С

Такой прибор называется вискозиметром Энглера. Для пересчета градусов Энглера в стоксы для минеральных масел применяется формула

Таким образом, для оценки вязкости жидкости можно использовать три величины, которые связаны межу собой

Рис. 1.8. Способы оценки вязкости жидкости

Вязкость жидкости зависит от температуры и от давления. При повышении температуры вязкость жидкости уменьшается и наоборот. У газов наблюдается обратное явление: с повышением температуры вязкость увеличивается, с понижением температуры — уменьшается.

6. Пенообразование. Выделение воздуха из рабочей жидкости при падении давления может вызвать пенообразование. На интенсивность пенообразования оказывает влияние содержащаяся в рабочей жидкости вода: даже при ничтожном количестве воды (менее 0,1% по массе рабочей жидкости) возникает устойчивая пена. Образование и стойкость пены зависят от типа рабочей жидкости, от ее температуры и размеров пузырьков, от материалов и покрытий гидроаппаратуры. Особенно пенообразование происходит интенсивно в загрязненных жидкостях и бывших в эксплуатации. При температуре жидкости свыше 70 С происходит быстрый спад пены.

7. Химическая и механическая стойкость. Характеризует способность жидкости сохранять свои первоначальные физические свойства при эксплуатации и хранении.

Окисление жидкости сопровождается выпадением из нее смол и шлаков, которые откладываются на поверхности элементов гидропривода в виде твердого налета. Снижается вязкость и изменяется цвет жидкости. Продукты окисления вызывают коррозию металлов и уменьшают надежность работы гидроаппаратуры. Налет вызывает заклинивание подвижных соединений, плунжерных пар, дросселирующих отверстий, разрушение уплотнений и разгерметизацию гидросистемы.

8. Совместимость. Совместимость рабочих жидкостей с конструкционными материалами и особенно с материалами уплотнений имеет очень большое значение. Рабочие жидкости на нефтяной основе совместимы со всеми металлами, применяемыми в гидромашиностроении, и плохо совместимы с уплотнениями, изготовленными из синтетической резины и из кожи. Синтетические рабочие жидкости плохо совмещаются с некоторыми конструкционными материалами и не совместимы с уплотнениями из маслостойкой резины.

9. Испаряемость жидкости. Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий в которых она находится: от температуры, от площади испарения, от давления, и от скорости движения газообразной среды над свободной поверхностью жидкости (от ветра).

10. Растворимость газов в жидкостях характеризуется объемом растворенного газа в единице объема жидкости и определяется по закону Генри:

где VГ — объем растворенного газа; VЖ — объем жидкости; k — коэффициент растворимости; Р — давление; Ра — атмосферное давление.

Коэффициент k имеет следующие значения при 20 С: для воды 0,016, керосина 0,13, минеральных масел 0,08, жидкости АМГ-10 — 0,1. При понижении давления выделяется растворимый в жидкости газ. Это явление может отрицательно сказываться на работе гидросистем.

Гипотеза сплошности среды.

В гидромеханике рассматриваются макроскопические движения жидкостей и газов, а также силовое взаимодействие этих сред с твердыми телами. При этом, как правило, размеры рассматриваемых объемов жидкостей, газов и твердых тел оказываются несопоставимо большими по сравнению с размерами молекул и межмолекулярными расстояниями. Это естественно, поскольку межмолекулярные расстояния в жидкостях составляют всего см.
Указанные обстоятельства позволяют ввести гипотезу сплошности изучаемой среды и заменить реальные дискретные объекты упрощенными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему. Такая идеализация упрощает реальную дискретную систему и позволяет использовать для ее описания хорошо разработанный математический аппарат исчисления бесконечно малых и теорию непрерывных функций.
Параметры, характеризующие термодинамическое состояние, покой или. движение среды, считаются при этом непрерывно изменяющимися по всему объему, занятому средой, кроме, быть может, отдельных точек, линий или поверхностей, где могут существовать разрывы.
Теоретические результаты, подученные для гипотетической сплошной среды, тем лучше совпадут с результатами наблюдений, чем полнее и точнее учтены в ней свойства реальных жидкостей и газов. К сожалению, идеализацию среды во многих случаях не удается ограничить только допущением ее сплошности. Сложность изучаемых явлений заставляет отказываться от учета и некоторых других свойств реальных сред. В зависимости от тех свойств, которые приписываются гипотетической сплошной среде, получают различные ее модели.
Гипотеза сплошности среды означает, что всякий малый элемент объема жидкости считается все-таки настолько большим, что содержит еще очень большое число молекул. Соответственно этому, когда мы будем говорить о бесконечно малых элементах объема, то всегда при этом будем подразумевать «физически» бесконечно малый объем, т. е. объем достаточно малый по сравнению с объемом жидкости, но большой по сравнению с молекулярными расстояниями.
Согласно гипотезе сплошности масса среды распределена в объеме непрерывно и в общем неравномерно.

Лекция 2. ОСНОВЫ ГИДРОСТАТИКИ

Гидравлика делится на два раздела: гидростатика и гидродинамика. Гидродинамика является более обширным разделом и будет рассмотрена в последующих лекциях. В этой лекции будет рассмотрена гидростатика.

Гидростатикой называется раздел гидравлики, в котором рассматриваются законы равновесия жидкости и их практическое применение.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10295 — | 7619 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Свойства жидкостей. Основные физические свойства жидкости

Известно, что все, что окружает человека, включая и его самого, — это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они — из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма — сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде — водород, азот, кислород и другие.
  3. Жидкие металлы — ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры — типа жидких кристаллов, неньютоновских жидкостей, которые обладают особыми свойствами.

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые физические свойства жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Читать еще:  Лечебная гимнастика при сколиозе видео

Под действием всем известной силы тяжести капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: «Назовите свойства жидкостей» человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, — это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода — очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: «Назовите свойства жидкостей» сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой — воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к «хождению» по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них — текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с критическими температурами (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.

  1. Жидкость — газ. Такие системы являются наиболее широко распространенными, поскольку существуют в природе повсеместно. Ведь испарение воды — часть естественного круговорота. При этом образующийся пар существует одновременно с жидкой водой. Если же говорить о замкнутой системе, то и там происходит испарение. Просто пар становится насыщенным очень быстро и вся система в целом приходит к равновесию: жидкость — насыщенный пар.
  2. Жидкость — твердые вещества. Особенно на таких системах заметно еще одно свойство — смачиваемость. При взаимодействии воды и твердого вещества последнее может смачиваться полностью, частично или вообще отталкивать воду. Существуют соединения, которые растворяются в воде быстро и практически неограниченно. Есть и те, что вообще к этому не способны (некоторые металлы, алмаз и прочие).

В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие — это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение — это процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация — процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе — испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно — ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

Удельным весом принято считать вес одной единицы объема жидкости. Данный показатель сильно зависит от температуры (при повышении ее вес снижается).

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь жидкие вещества — одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел — это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • «лизун», которым играют дети;
  • «хенд гам», или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. Неньютоновские жидкости — достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Жидкие вещества

Строение

Молекулы жидкости не имеют строго упорядоченной структуры как в твёрдом веществе и могут перескакивать с одного места на другое, что объясняет текучесть жидкости. Расстояние между молекулами жидкого вещества близкое, но не такое большое, как между молекулами газов. Частицы жидкости не отрываются и не перемещаются свободно и хаотично.

Рис. 1. Молекулярное строение жидкости.

Притяжение между молекулами достаточно сильное, чтобы сохранять межмолекулярное расстояние, но достаточно слабое, чтобы держать молекулы в статичном положении.

Жидкость держит объём, но не держит форму, совершая колебательные движения.

Физические свойства

Жидкость отличается от газов и твёрдых тел и имеет индивидуальные характеристики:

  • текучесть – возможность принимать форму сосуда и двигаться под действием даже незначительной силы;
  • вязкость – способность оказывать сопротивление перемещению одной части вещества относительно другой;
  • малосжимаемость – невозможность уменьшить объём за счёт малого пространства между молекулами;
  • смачивание – «прилипание» молекул жидкости к твёрдым телам;
  • образование поверхностного натяжения – создание раздела фаз (жидкой и газообразной) в виде упругой мембраны.

Рис. 2. Схема поверхностного натяжения.

Жидкости могут существовать только в определённом интервале температур. При понижении температуры жидкость переходит в твёрдое состояние, при повышении – превращается в газообразное вещество. Границы температурного интервала зависят от давления.

Рис. 3. Агрегатное состояние воды в зависимости от температуры.

Условно жидкости делят на две группы:

  • чистые, состоящие только из молекул вещества;
  • смеси, включающие дополнительные частицы и молекулы и других веществ.

Примерами жидких смесей являются кровь, морская вода, сок фруктов.

Многие жидкости органического и неорганического происхождения являются растворителями. Это вещества, способные разлагать (растворять) другие жидкие, твёрдые или газообразные вещества. К растворителям относятся этанол, спирт, ацетон, вода, аммиак.

В условиях невесомости жидкость приобретает форму капли за счёт поверхностного натяжения, создаваемого со всех сторон.

Классификация

Самая известная жидкость на планете – вода. Она характеризуется высокой текучестью, замерзанию при 0°C, испарению при 100°C. Вода не имеет высокой вязкости и является универсальным растворителем.

Однако существует множество других жидкостей, отличающихся от воды физико-химическими свойствами. Выделяют основные виды:

  • атомарные, состоящие из атомов или сферических молекул (метан, аргон в виде жидкостей);
  • двухатомные, состоящие из двух одинаковых атомов вещества (ртуть, жидкий водород, натрий);
  • полярные, состоящие из полярных молекул (жидкий бромводород);
  • ассоциированные, включающие водородные связи (вода, глицерин).

В физике отдельно выделяют квантовые жидкости и жидкие кристаллы.

Что мы узнали?

Из урока 11 класса узнали, что такое жидкости. Это текучие вязкие вещества, находящиеся между твёрдым и газообразным агрегатными состояниями. Жидкость принимает форму сосуда, но при этом имеет собственный объём. В жидком состоянии вещества находятся в определённом диапазоне температур. При смещении температуры жидкость переходит в твёрдое или газообразное состояние. Выделяют несколько видов жидкости в зависимости от их химического строения.

Виды жидкостей

Жидкости на водной основе.Жидкости разрыва на водной основе используются сегодня в большинстве обработок. Хотя это было не так в первые годы гидроразрывов когда жидкости на нефтяной основе использовались фактически на всех обработках. Этот вид жидкости имеет ряд приемуществ над жидкостью на нефтяной основе.

1. Жидкости на водной основе экономичнее. Базовый компонент — вода намного дешевле чем нефть, конденсат, метанол и кислота.

2. Жидкости на водной основе дают больший гидростатический эффект чем нефть, газ и метанол.

3. Эти жидкости невоспламеняемы ; следовательно они не взрывоопасны.

4.Жидкости на водной основе легко доступны.

5. Этот тип жидкости легче контролируется и загущаются.

Линейные жидкости разрыва.Необходимость загущения воды чтобы помочь транспортировать расклинивающий материал (проппант), уменьшить потерю жидкости, и увеличить ширину трещины было очевидным для ранних иследователей. Первый загуститель воды был крахмал. В начале 1960-х была найдена замена — гуаровый клей — это полимерный загуститель. Он используется и в наше время. Также используются и другие линейные гели в качестве жидкости разрыва: гидроксипропил, гидроксиэтилцеллюлоза, карбоксиметил, ксантан и в некоторых, редких случаях полиакриламиды.

Соединяющиеся жидкости разрыва.Впервые были использованны в конце 1960-х, когда было уделено большое внимание ГРП. Развитие этого типа жидкости решило много проблем которые возникали, когда было необходимо закачивать линейные гели в глубокие скважины с высокой температурой. Соединяющаяся реакция такова, что молекулярный вес базового полимера в значительной степени увеличивается связывая вместе различные молекулы полимера в структуру. Первой соединяющейся жидкостью был гуаровый клей. Типичный соединяющийся гель в конце 1960-х состоял из 9586 г/м3 гуарового соеденителя с боритовой сурьмой. Сурьмовая среда была с относительнонизким показателем pH в жидкости разрыва. Боровая среда была с высоким показателем pH. Также было разработанно много других жидкостей этого типа, таких как алюминиевые, на хромной, медной основе,и марганце. Дополнительно в конце 1960-х , начале 1970-х годов стали использовать соеденитель на основе КМЦ (карбоксилметилцеллюлоза) и некоторые типы соеденителя на основе гидрокситилцеллюлозы, хотя последний был дорогостоящим. С разработкой гидроксипропилового гуара и карбоксиметилгидроксиэтилцеллюлозных полимеров, также было разработанно новое поколение соеденителей. Полимерные молекулы соеденителя имеют тенденцию к увеличению термостабильности базового полимера. Это теоретезирует что эта температурная стабильность происходит из снижения термальной нестабильности молекулы в результате ее самой однородной природы и некоторой защищенности от гидролиза, окисления или других реакций деполимеризации которые могут случиться. Полимеры соеденителя, хотя и увеличивают кажущуюся вязкость жидкости на несколько порядков, не обязательно вызывают трение при давлении увеличивающееся на некоторую степень при операциях закачки. Эти системы были недавно заменены на замедляющие соеденительные системы.

Замедляющие соеденительные системы.Достойны внимания своего развития в 1980-е годы, когда они использовались как жидкости разрыва с контролируемым временем соединения, или замедленной реакцией соединения. Время соединения определено как время чтобы базовая жидкость имела однородную структуру. Очевидно, что время соединения, это время, необходимое чтобы достичь очень большого увеличения вязкости и становления жидкости однородной. Значительное количество исследований было проведено чтобы понять важность использования соеденительных систем жидкости. Эти исследования показали, что замедляющие соеденительные системы показывают лучщую дерсперсность соеденителя, дают большую вязкость, и увеличивают в жидкости разрыва термостабильность.Другое приемущество этих систем это пониженное трение при закачке. Как результат этого, замедляющие соеденительные системы используются больше чем обычные соеденительные системы. Основное достоинство использования соеденительных систем над линейными жидкостями описанны ниже :

1. Они могут достигнуть вязкости намного выше при ГРП по сравнению с нагрузкой геля.

2. Система наиболее эффективна с точки зрения контроля потери жидкости.

3. Соеденительные системы имеют лучшею термостабильность.

4.Соеденительные системы более эффективны в цене за фут полимера.

Жидкости на нефтяной основе. Самый простой на нефтяной основе гель разрыва, возможен сегодня, это продукт реакции фосфата алюминия и базовый, типичный алюминат соды. Эта реакция присоединения, которая преобразует созданную соль, что дает вязкость в дизельных топливах или сдерживает до высоко гравитационной сырую систему. Гель фосфата алюминия улучшает более сырые нефти и увеличивает термостабильность.

Фосфат алюминия может быть использован, чтобы создать жидкость с повышенной стабильностью к высоким температурам и хорошей емкостью для транспортировки проппанта для использования в скважинах с высокими температурами : более 127°C. Основным недостатком использования жидкостей на нефтяной основе это пожаровзрывоопасность.Также надо отметить, что приготовление жидкостей на нефтяной основе требует большого технического и качественного контроля. Приготовление же жидкости на водной основе значительно облегчает процесс.

Жидкости на спиртовой основе. Метанол и изопропанол использовались как компоненты жидкости на водной основе и жидкости на кислотной основе, или, в некоторых случаях как и солевые жидкости разрыва в течении многих лет. Спирт, который уменьшает поверхностное натяжение воды, направленно использовался для удаления водяных препятствий. В жидкостях разрыва спирт нашел широкое применение как температурный стабилизатор,так как он действует как удерживатель кислорода. Полимеры повысили возможность загустить чистый метанол и пропанол. Эти полимеры включая гидроксипропилцеллюлозу и г идроксипропилгуар, заменили. Гуаровая смола поднимает вязкость на 25% выше, чем метанол и изопропанол, но кроме того дает осадок. В пластах, чувствительных к воде, жидкости на гидрокарбонатной основе более предпочтительны, чем жидкости на спиртовой основе.

Эмульсионные жидкости разрыва.Этот вид жидкости разрыва использовался на протяжении многих лет Даже некоторые первые жидкости разрыва на нефтяной основе, были внешне нефтяными эмульсиями. У них много недостатков и они используются в очень узком спектре, потому, что крайне высокое давление трения это результат присущих им вязкости и из-за отсутствия снижения трения. Эти жидкости разрыва были изобретены в середине 1970-х. Стоимостная эффективность нефтяной эмульсии подразумевает, что закаченная нефть может быть добыта назад и проданна. Эти эмульсии были очень популярными, когда сырая нефть и конденсат стоили 19 $ — 31 $ за м3. Использование эмульсий типа «нефть в воде» направленно сокращалось с ростом цены на нефть.

Также в мировой практике известны следующие виды жидкостей разрыва :

Жидкости наоснове пен, энергетические жидкостиразрыва, где используется азот и углекислый газ , растворяемые в воде.

|следующая лекция ==>
Стоимость|Измерение вязкости

Дата добавления: 2013-12-14 ; Просмотров: 2337 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Плотность жидкостей

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения плотности в таблице соответствует указанным температурам, допускается интерполяция данных.

Множество веществ способны находится в жидком состоянии. Жидкости – вещества различного происхождения и состава, которые обладают текучестью, — они способны изменять свою форму под действием некоторых сил. Плотность жидкости – это отношение массы жидкости к объёму, который она занимает.

Рассмотрим примеры плотности некоторых жидкостей. Первое вещество, которое приходит в голову при слове «жидкость» — это вода. И это вовсе не случайно, ведь вода является самой распространённой субстанцией на планете, и поэтому её можно принять за идеал.

Плотность воды равна 1000 кг/м 3 для дистиллированной и 1030 кг/м 3 для морской воды. Поскольку данная величина тесно взаимосвязана с температурой, стоит отметить, что данное «идеальное» значение получено при +3,7°С. Плотность кипящей воды будет несколько меньше – она равна 958,4 кг/м 3 при 100°С. При нагревании жидкостей их плотность, как правило, уменьшается.

Плотность воды близка по значению различным продуктам питания. Это такие продукты, как: раствор уксуса, вино, нежирное молоко, 20%-ные сливки и 30%-ная сметана. Отдельные продукты оказываются плотнее, к примеру, яичный желток — его плотность равна 1042 кг/м 3 . Плотнее воды оказывается, например, ряд напитков и соков: ананасовый сок – 1084 кг/м 3 , виноградный сок – до 1361 кг/м 3 , апельсиновый сок — 1043 кг/м 3 , кока-кола и пиво – 1030 кг/м 3 .

Многие вещества по плотности уступают воде. К примеру, спирты оказываются гораздо легче воды. Так плотность этилового спирта равняется 789 кг/м 3 , бутилового – 810 кг/м 3 , метилового — 793 кг/м 3 (при 20°С). Отдельные виды топлива и масла обладают ещё более низкими значениями плотности: нефть — 730-940 кг/м 3 , бензин — 680-800 кг/м 3 . Плотность керосина составляет около 800 кг/м 3 , дизельного топлива — 879 кг/м 3 , мазута – до 990 кг/м 3 .

Плотность жидкостей — таблица при различных температурах

ЖидкостьТемпература,
°С
Плотность жидкости,
кг/м 3
Анилин0…20…40…60…80…100…140…1801037…1023…1007…990…972…952…914…878
Антифриз 65 (ГОСТ 159-52)-60…-40…0…20…40…80…1201143…1129…1102…1089…1076…1048…1011
Ацетон C3H6O0…20813…791
Белок куриного яйца201042
Бензин20680-800
Бензол C6H67…20…40…60910…879…858…836
Бром203120
Вода0…4…20…60…100…150…200…250…370999,9…1000…998,2…983,2…958,4…917…863…799…450,5
Вода морская201010-1050
Вода тяжелая10…20…50…100…150…200…2501106…1105…1096…1063…1017…957…881
Водка0…20…40…60…80949…935…920…903…888
Вино крепленое201025
Вино сухое20993
Газойль20…60…100…160…200…260…300848…826…801…761…733…688…656
Глицерин C3H5(OH)320…60…100…160…200…2401260…1239…1207…1143…1090…1025
ГТФ (теплоноситель)27…127…227…327980…880…800…750
Даутерм20…50…100…150…2001060…1036…995…953…912
Желток яйца куры201029
Карборан271000
Керосин20802-840
Кислота азотная HNO3 (100%-ная)-10…0…10…20…30…40…501567…1549…1531…1513…1495…1477…1459
Кислота пальмитиновая C16H32O2 (конц.)62853
Кислота серная H2SO4 (конц.)201830
Кислота соляная HCl (20%-ная)201100
Кислота уксусная CH3COOH (конц.)201049
Коньяк20952
Креозот151040-1100
Кровь человека371050-1062
Ксилол C8H1020880
Купорос медный (10%)201107
Купорос медный (20%)201230
Ликер вишневый201105
Мазут20890-990
Масло арахисовое15911-926
Масло машинное20890-920
Масло моторное Т20917
Масло оливковое15914-919
Масло подсолнечное (рафинир.)-20…20…60…100…150947…926…898…871…836
Мед (обезвоженный)201621
Метилацетат CH3COOCH325927
Молоко201030
Молоко сгущенное с сахаром201290-1310
Нафталин230…250…270…300…320865…850…835…812…794
Нефть20730-940
Олифа20930-950
Паста томатная201110
Патока вареная201460
Патока крахмальная201433
ПАБ20…80…120…200…260…340…400990…961…939…883…837…769…710
Пиво201008-1030
ПМС-10020…60…80…100…120…160…180…200967…934…917…901…884…850…834…817
ПЭС-520…60…80…100…120…160…180…200998…971…957…943…929…902…888…874
Пюре яблочное1056
Раствор поваренной соли в воде (10%-ный)201071
Раствор поваренной соли в воде (20%-ный)201148
Раствор сахара в воде (насыщенный)0…20…40…60…80…1001314…1333…1353…1378…1405…1436
Ртуть0…20…100…200…300…40013596…13546…13350…13310…12880…12700
Сероуглерод1293
Силикон (диэтилполисилоксан)0…20…60…100…160…200…260…300971…956…928…900…856…825…779…744
Сироп яблочный201613
Скипидар20870
Сливки молочные (жирность 30-83%)20939-1000
Смола801200
Смола каменноугольная201050-1250
Сок апельсиновый151043
Сок виноградный201056-1361
Сок грейпфрутовый151062
Сок томатный201030-1141
Сок яблочный201030-1312
Спирт амиловый20814
Спирт бутиловый20810
Спирт изобутиловый20801
Спирт изопропиловый20785
Спирт метиловый20793
Спирт пропиловый20804
Спирт этиловый C2H5OH0…20…40…80…100…150…200806…789…772…735…716…649…557
Сплав натрий-калий (25%Na)20…100…200…300…500…700872…852…828…803…753…704
Сплав свинец-висмут (45%Pb)130…200…300…400…500..600…70010570…10490…10360…10240…10120..10000…9880
Стекло жидкое201350-1530
Сыворотка молочная201027
Тетракрезилоксисилан (CH3C6H4O)4Si10…20…60…100…160…200…260…300…3501135…1128…1097…1064…1019…987…936…902…858
Тетрахлордифенил C12H6Cl4 (арохлор)30…60…150…250…3001440…1410…1320…1220…1170
Толуол0…20…50…80…100…140886…867…839…810…790…744
Топливо дизельное20…40…60…80…100879…865…852…838…825
Топливо карбюраторное20768
Топливо моторное20911
Топливо РТ-60…-40…0…20…40…60…100…140…160…200836…821…792…778…764…749…720…692…677…648
Топливо Т-1-60…-40…0…20…40…60…100…140…160…200867…853…824…819…808…795…766…736…720…685
Топливо Т-2-60…-40…0…20…40…60…100…140…160…200824…810…781…766…752…745…709…680…665…637
Топливо Т-6-60…-40…0…20…40…60…100…140…160…200898…883…855…841…827…813…784…756…742…713
Топливо Т-8-60…-40…0…20…40…60…100…140…160…200847…833…804…789…775…761…732…703…689…660
Топливо ТС-1-60…-40…0…20…40…60…100…140…160…200837…823…794…780…765…751…722…693…879…650
Углерод четыреххлористый (ЧХУ)201595
Уроторопин C6H12N2271330
Фторбензол201024
Хлорбензол201066
Этилацетат20901
Этилбромид201430
Этилиодид201933
Этилхлорид921
Эфир0…20736…720
Эфир Гарпиуса271100

Низкими показателями плотности отличаются такие жидкости, как: скипидар 870 кг/м 3 , ацетон – 791 кг/м 3 , этиловый эфир — 740 кг/м 3 .
Значительной плотностью отличаются концентрированные кислоты. Так, плотность серной кислоты составляет – 1830 кг/м 3 , азотной – 1513 кг/м 3 , фосфорной – 1426 кг/м 3 , муравьиной – 1221 кг/м 3 , соляной – 1100 кг/м 3 .

Металлы также могут находиться в жидком агрегатном состоянии, и именно они обладают наибольшей плотностью. Чтобы убедиться в этом, достаточно взглянуть на их показатели. Крупнейшей величиной обладает ртуть: плотность жидкости при комнатной температуре достигает 13546 кг/м 3 . Следующие цифры приведены для металлов в расплавленном состоянии: висмут 10 030 кг/м 3 , серебро — 9300 кг/м 3 , свинец — 7000 кг/м 3 , олово — 6834 кг/м 3 , алюминий — 2380 кг/м 3 .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector