0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Краткая характеристика и принцип действия

Пенные генераторы. Назначение, принцип действия, краткая характеристика.

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики

ПоказательРазмерностьГенератор пены средней кратности
ГПС-200ГПС-600ГПС-2000
Производительность по пенел/с
Кратность пены80 … 100
Давление перед распылителемМПа0,4 … 0,6
Расход 4-6% раствора пенообразователял/с1,6…2,05,0…6,016,0…20,0
Дальность подачи пеным
Соединительная головкаГМ-5ГМ-70ГМ-80

Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. За счет эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Назначение и классификация огнетушителей

Огнетушители – переносные (или передвижные) устройства для тушения очага пожара за счет выпуска запасенного огнетушащего вещества. Они наиболее массовые и доступные средства пожаротушения. Их рекомендуют для тушения загораний на рабочих местах в технологических процессах ряда производств, в жилых помещениях, в общественных и промышленных сооружениях, на транспорте и т.д. вот поэтому они и являются первичными средствами пожаротушения.

В номенклатуре основных средств пожарной техники огнетушители по объему производств занимают более 45…50%.

Эффективность их применения очень высокая. Средняя площадь пожаров на объектах, оснащенными огнетушителями в 7,5…9,5 раз меньше, чем площади пожаров на объектах, где они отсутствуют. При этом в 8…10 раз снижаются и потери от пожара.

Огнетушители по виду применяемого огнетушащего вещества подразделяются на: водные (ОВ), воздушно-пенные (ОВП), порошковые (ОП) и газовые (углекислотные (ОУ), хладоновые (ОХ))_, комбинированные и в зависимости от вида используемого огнетушащего вещества огнетушители можно использовать для тушения загораний одного или нескольких классов пожаров горючих веществ: А,В,С и Е.

По объему корпуса:

· ручные малолитражные с объемом корпуса до 5 л;

· промышленные ручные с объемом корпуса от 5 до 10 л;

· стационарные и передвижные с объемом корпуса свыше 10 л.

По способу подачи огнетушащего состава:

· под давлением газов, образующихся в результате химической реакции компонентов заряда;

· под давлением газов, подаваемых из специального баллончика, размещенного в корпусе огнетушителя;

· под давлением газов, закаченных в корпус огнетушителя;

· под собственным давлением огнетушащего средства.

По виду пусковых устройств:

· с вентильным затвором;

· с запорно-пусковым устройством пистолетного типа;

· с пуском от постоянного источника давления.

Общие технические требования к огнетушителям и параметрам их характеристик, обеспечивающих эффективное тушение, сформулированы в нормативно-технической документации – НПБ 155-96. Пожарная техника. Огнетушители переносные.

В зависимости от массы огнетушащего вещества устанавливаются минимальные длина (м) струи огнетушащего вещества и продолжительность его подачи (с).

Огнетушители маркируются буквами, характеризующими вид огнетушителя, и цифрами, обозначающими его вместимость.

Последнее изменение этой страницы: 2016-12-16; Нарушение авторского права страницы

Силовой трансформатор. Определение, классификация и принцип действия.

Силовой трансформатор — это электрический аппарат, который предназначен для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения. Трансформаторы бывают:

  • в зависимости от количества фаз: однофазные и трехфазные;
  • по количеству обмоток: двухобмоточные и трехобмоточные;
  • в зависимости от места их установки: наружной и внутренней установки;
  • по назначению: понижающие и повышающие;

Кроме того, силовые трансформаторы различают по группам соединения обмоток, по способу охлаждения. Также при установке трансформаторов учитывают климатические условия.

Принцип работы любого силового трансформатора основан на законе электромагнитной индукции. Если к обмотке данного устройства подключить источник переменного тока, то по виткам этой обмотки будет протекать переменный ток, который создаст в магнитопроводе трансформатора переменный магнитный поток. Замкнувшись в магнитопроводе, переменный магнитный поток будет индуктировать электродвижущую силу (ЭДС) в другой обмотке трансформатора. Это объясняется тем, что все обмотки трансформатора намотаны на один магнитопровод, то есть они связаны между собой магнитной связью. Значение индуктируемой ЭДС будет пропорционально количеству витков данной обмотки.

Краткая характеристика и конструкция силового трансформатора типа ТДТН-40000/110

Конструкции силовых трансформаторов различного типа схожи между собой. Отличие заключается в комплектации аппарата, конструкции системы охлаждения и защиты. Рассмотрим конструкцию аппарата на примере аппарата типа ТДТН-40000/110.

Расшифруем буквенные и цифровые обозначения. Первая буква Т говорит о том сколько фаз у трансформатора, в данном случае он трехфазный. Буква Д обозначает тип системы охлаждения. Система охлаждения Д характеризуется естественной циркуляцией трансформаторного масла и принудительной циркуляцией воздуха. Третья буква Т показывает количество обмоток силового трансформатора. В данном случае их три, то есть аппарат трехобмоточный. Последняя буква Н свидетельствует о возможности регулировки напряжения под нагрузкой (устройство РПН). Цифровое значение 40000 – номинальная мощность силового трансформатора в киловольтамперах (кВА). Значение 110 является номинальным напряжением обмотки высокого напряжения.

Далее рассмотрим основные конструктивные части силового трансформатора. Три обмотки высокого, среднего и низкого напряжения намотаны на сердечник (магнитопровод), выполненный из шихтованной стали. Магнитопровод с обмотками помещен в специальный бак. На крышке бака расположены выводы обмоток. В данном случае трех обмоток: высокого (ВН), среднего (СН) и низкого напряжений (НН). Обмотка ВН и СН имеет нулевой вывод, предназначенный для заземления обмотки. Если нулевой вывод трансформатора заземляется, то эта обмотка называется глухозаземленной, в противном случае именуется с изолированной нейтралью.

Читать еще:  Неоперабельный рак простаты

Также на крышке бака расположена выхлопная труба, газовая защита, устройство регулировки напряжения (РПН), расширитель и маслопровод, соединяющий расширитель непосредственно с самим баком.

Выхлопная труба служит для защиты бака трансформатора от разрыва при резком увеличении давления газа, который выделяется при внутренних повреждениях аппарата.

Газовая защита выполнена на газовом реле, которое действует на сигнал либо на отключение трансформатора в случае повреждения внутри самого аппарата.

Расширитель предназначен для обеспечения постоянного заполнения бака маслом при изменении температуры окружающего воздуха или нагрузки трансформатора, а также для уменьшения площади поверхности соприкосновения масла с воздухом. Соединение расширителя с атмосферой осуществляется через воздухоосушитель (дыхательный патрон).

Термосифонный фильтр заполняется силикагелем и служит для защиты масла от увлажнения и окисления. То есть осуществляет непрерывную регенерацию трансформаторного масла.

Для заливки и слива масла на баке аппарата расположены соответствующие задвижки, а также пробка для слива остатков масла. Для взятия пробы масла используется расположенный в нижней части бака кран.

Транзисторы: принцип работы,​ схема подключения, отличие биполярного от полевого

В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Читать еще:  Простата как влияет на женщину

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.
Читать еще:  Лонгидаза при фиброзе простаты

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Принцип действия и устройство электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.

Ссылка на основную публикацию
Adblock
detector
×
×